#### Filter Results:

#### Publication Year

1991

2017

#### Publication Type

#### Co-author

#### Publication Venue

#### Data Set Used

#### Key Phrases

Learn More

Modular structure is ubiquitous in real-world complex networks, and its detection is important because it gives insights in the structure-functionality relationship. The standard approach is based on the optimization of a quality function, modularity, which is a relative quality measure for a partition of a network into modules. Recently some authors [1, 2]… (More)

Assessing the navigability of interconnected networks (transporting information, people, or goods) under eventual random failures is of utmost importance to design and protect critical infrastructures. Random walks are a good proxy to determine this navigability, specifically the coverage time of random walks, which is a measure of the dynamical… (More)

- Manlio De Domenico, Albert Solé-Ribalta, Emanuele Cozzo, Mikko Kivelä, Yamir Moreno, Mason A. Porter +2 others
- 2013

A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates generalizing ''traditional'' network theory, and… (More)

We study the time scales associated with diffusion processes that take place on multiplex networks, i.e., on a set of networks linked through interconnected layers. To this end, we propose the construction of a supra-laplacian matrix, which consists of a dimensional lifting of the laplacian matrix of each layer of the multiplex network. We use perturbative… (More)

The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard… (More)

In this paper we apply a heuristic method based on artificial neural networks in order to trace out the efficient frontier associated to the portfolio selection problem. We consider a generalization of the standard Markowitz mean-variance model which includes cardinality and bounding constraints. These constraints ensure the investment in a given number of… (More)

Explosive collective phenomena have attracted much attention since the discovery of an explosive percolation transition. In this Letter, we demonstrate how an explosive transition shows up in the synchronization of scale-free networks by incorporating a microscopic correlation between the structural and the dynamical properties of the system. The… (More)

One of the more challenging tasks in the understanding of dynamical properties of models on top of complex networks is to capture the precise role of multiplex topologies. In a recent paper, Gómez et al. [Phys. Rev. Lett. 110, 028701 (2013)], some of the authors proposed a framework for the study of diffusion processes in such networks. Here, we extend the… (More)

Modular structure is ubiquitous in real-world complex networks. The detection of this type of organization into modules gives insights in the relationship between topological structure and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity, which is a relative… (More)

Current modeling of infectious diseases allows for the study of realistic scenarios that include population heterogeneity, social structures, and mobility processes down to the individual level. The advances in the realism of epidemic description call for the explicit modeling of individual behavioral responses to the presence of disease within modeling… (More)