Sergio Fonte

Learn More
We present global lithological maps of the Vestan surface based on Dawn mission’s Visible InfraRed (VIR) Spectrometer acquisitions with a spatial sampling of 200 m. The maps confirm the results obtained with the data set acquired by VIR with a spatial sampling of 700 m, that the reflectance spectra of Vesta’s surface are dominated by pyroxene absorptions(More)
The mineralogy of Vesta, based on data obtained by the Dawn spacecraft's visible and infrared spectrometer, is consistent with howardite-eucrite-diogenite meteorites. There are considerable regional and local variations across the asteroid: Spectrally distinct regions include the south-polar Rheasilvia basin, which displays a higher diogenitic component,(More)
Olivine is a major component of the mantle of differentiated bodies, including Earth. Howardite, eucrite and diogenite (HED) meteorites represent regolith, basaltic-crust, lower-crust and possibly ultramafic-mantle samples of asteroid Vesta, which is the lone surviving, large, differentiated, basaltic rocky protoplanet in the Solar System. Only a few of(More)
Studies of the dwarf planet (1) Ceres using ground-based and orbiting telescopes have concluded that its closest meteoritic analogues are the volatile-rich CI and CM carbonaceous chondrites. Water in clay minerals, ammoniated phyllosilicates, or a mixture of Mg(OH)2 (brucite), Mg2CO3 and iron-rich serpentine have all been proposed to exist on the surface.(More)
The typically dark surface of the dwarf planet Ceres is punctuated by areas of much higher albedo, most prominently in the Occator crater. These small bright areas have been tentatively interpreted as containing a large amount of hydrated magnesium sulfate, in contrast to the average surface, which is a mixture of low-albedo materials and magnesium(More)
The dwarf planet Ceres is known to host phyllosilicate minerals at its surface, but their distribution and origin have not previously been determined. We used the spectrometer onboard the Dawn spacecraft to map their spatial distribution on the basis of diagnostic absorption features in the visible and near-infrared spectral range (0.25 to 5.0 micrometers).(More)
The Dawn spacecraft mission has provided extensive new and detailed data on Vesta that confirm and strengthen the Vesta–howardite–eucrite–diogenite (HED) meteorite link and the concept that Vesta is differentiated, as derived from earlier telescopic observations. Here, we present results derived by newly calibrated spectra of Vesta. The comparison between(More)
Remote sensing images are generally affected by different types of noise that degrade the quality of the spectral data (i.e., stripes and spikes). Hyperspectral images returned by a Visible and InfraRed (VIR) spectrometer onboard the NASA Dawn mission exhibit residual systematic artifacts. VIR is an imaging spectrometer coupling high spectral and spatial(More)
Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the(More)
Planetary sciences can benefit from several different sources of information, i.e. ground-based or near Earth-based observations, space missions and laboratory experiments. The data collected from these sources, however, are spread over a number of smaller, separate communities and stored through different facilities: this makes it difficult to integrate(More)