Sergio F . Santos

Learn More
DNA topoisomerases control the topology of DNA. Type II topoisomerases exhibit topology simplification, whereby products of their reactions are simplified beyond that expected based on thermodynamic equilibrium. The molecular basis for this process is unknown, although DNA bending has been implicated. To investigate the role of bending in topology(More)
The dynamics of the oscillating microcantilever for amplitude modulation atomic force microscopy (AM AFM) operating in air is well understood theoretically but the experimental outcomes are still emerging. We use double-stranded DNA on mica as a model biomolecular system for investigating the connection between theory and experiment. A demonstration that(More)
BACKGROUND Accurate mechanical characterization by the atomic force microscope at the highest spatial resolution requires that topography is deconvoluted from indentation. The measured height of nanoscale features in the atomic force microscope (AFM) is almost always smaller than the true value, which is often explained away as sample deformation, the(More)
This chapter reviews amplitude modulation (AM) AFM in air and its applications to high-resolution imaging and interpretation of macromolecular complexes. We discuss single DNA molecular imaging and DNA-protein interactions, such as those with topoisomerases and RNA polymerase. We show how relative humidity can have a major influence on resolution and(More)
Measuring the level of hydrophilicity of heterogeneous surfaces and the true height of water layers that form on them in hydrated conditions has a myriad of applications in a wide range of scientific and technological fields. Here, we describe a true non-contact mode of operation of atomic force microscopy in ambient conditions and a method to establish the(More)
We describe fundamental energy dissipation in dynamic nanoscale processes in terms of the localization of the interactions. In this respect, the areal density of the energy dissipated per cycle and the effective area of interaction in which each process occurs are calculated for four elementary dissipative processes. It is the ratio between these two, which(More)
Here, we enhance the capabilities of the atomic force microscope (AFM) to show that force profiles can be reconstructed without restriction by monitoring the wave profile of the cantilever during a single oscillation cycle. Two approaches are provided to reconstruct the force profile in both the steady and transient states in what we call single-cycle(More)
We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the(More)
During their synthesis, multi-walled carbon nanotubes can be aligned and impregnated in a polymer matrix to form an electrically conductive and flexible nanocomposite with high backing density. The material exhibits the highest reported electrical conductivity of CNT-epoxy composites (350 S/m). Here, we show how conductive atomic force microscopy can be(More)