Learn More
Cachexia is a debilitating condition characterized by extreme skeletal muscle wasting that contributes significantly to morbidity and mortality. Efforts to elucidate the underlying mechanisms of muscle loss have predominantly focused on events intrinsic to the myofiber. In contrast, less regard has been given to potential contributory factors outside the(More)
We investigated the role of phospholipase D (PLD) and its product phosphatidic acid (PA) in myogenic differentiation of cultured L6 rat skeletal myoblasts. Arginine-vasopressin (AVP), a differentiation inducer, rapidly activated PLD in a Rho-dependent way, as shown by almost total suppression of activation by C3 exotoxin pretreatment. Addition of 1-butanol,(More)
Muscle homeostasis involves de novo myogenesis, as observed in conditions of acute or chronic muscle damage. Tumor Necrosis Factor (TNF) triggers skeletal muscle wasting in several pathological conditions and inhibits muscle regeneration. We show that intramuscular treatment with the myogenic factor Arg(8)-vasopressin (AVP) enhanced skeletal muscle(More)
Static magnetic field (SMF) interacts with mammal skeletal muscle; however, SMF effects on skeletal muscle cells are poorly investigated. The myogenic cell line L6, an in vitro model of muscle development, was used to investigate the effect of a 80 +/- mT SMF generated by a custom-made magnet. SMF promoted myogenic cell differentiation and hypertrophy,(More)
The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an(More)
Recent studies strengthen the belief that physical activity as a behavior has a genetic basis. Screening wheel-running behavior in inbred mouse strains highlighted differences among strains, showing that even very limited genetic differences deeply affect mouse behavior. We extended this observation to substrains of the same inbred mouse strain, that is,(More)
Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma(More)
Vitamin A and its derivaties (retinoids) are necessary for the maintenance of normal phenotypic expression. An attempt at understanding the biochemical role of vitamin A had led to the demonstration of a new pathway for retinol. In this pathway, vitamin A is phosphorylated to retinylphosphate (RP), which is then glycosylated to retinylphosphatemannose(More)
Epigenetics finely tunes gene expression at a functional level without modifying the DNA sequence, thereby contributing to the complexity of genomic regulation. Satellite cells (SCs) are adult muscle stem cells that are important for skeletal post-natal muscle growth, homeostasis and repair. The understanding of the epigenome of SCs at different stages and(More)
Epigenetics is defined as heritable information other than the DNA sequence itself. The concept implies that the regulation of gene expression is a highly complex process in which epigenetics plays a major role that ranges from fine-tuning to permanent gene activation/deactivation. Skeletal muscle is the main tissue involved in locomotion and energy(More)