Sergio A. Mezzano

Learn More
The renin-angiotensin system (RAS) has emerged as one of the essential links in the pathophysiology of vascular disease. Angiotensin (Ang) II, the main peptide of the RAS, was considered as a vasoactive hormone, but in the past years, this view has been modified to a growth factor that regulates cell proliferation/apoptosis and fibrosis. Recently, this view(More)
BACKGROUND Nuclear factor-kappaB (NF-kappaB) regulates genes involved in renal disease progression, such as the chemokines monocyte chemoattractant protein-1 (MCP-1) and RANTES. NF-kappaB is activated in experimental models of renal injury, and in vitro studies also suggest that proteinuria and angiotensin II could be important NF-kappaB activators. It has(More)
Pathological classifications in current use for the assessment of glomerular disease have been typically opinion-based and built on the expert assumptions of renal pathologists about lesions historically thought to be relevant to prognosis. Here we develop a unique approach for the pathological classification of a glomerular disease, IgA nephropathy, in(More)
Although metabolic derangement plays a central role in diabetic nephropathy, a better understanding of secondary mediators of injury may lead to new therapeutic strategies. Expression of macrophage migration inhibitory factor (MIF) is increased in experimental diabetic nephropathy, and increased tubulointerstitial mRNA expression of its receptor, CD74, has(More)
Angiotensin (Ang) II mediates pathophysiologial changes in the kidney. Ang-(1-7) by interacting with the G protein-coupled receptor Mas may also have important biological activities.In this study, renal deficiency for Mas diminished renal damage in models of renal insufficiency as unilateral ureteral obstruction and ischemia/reperfusion injury while the(More)
We have recently described that in an experimental model of atherosclerosis and in vascular smooth muscle cells (VSMCs) statins increased the activation of the Smad pathway by transforming growth factor-β (TGF-β), leading to an increase in TGF-β-dependent matrix accumulation and plaque stabilization. Angiotensin II (AngII) activates the Smad pathway and(More)
Background. Nuclear factor-kB (NF-kB) regulates genes involved in renal disease progression, such as the chemokines monocyte chemoattractant protein-1 (MCP-1) and RANTES. NF-kB is activated in experimental models of renal injury, and in vitro studies also suggest that proteinuria and angiotensin II could be important NF-kB activators. It has been proposed(More)
Mutations in the TRPC6 calcium channel (Transient receptor potential channel 6) gene have been associated with familiar forms of Focal and Segmental Glomerulosclerosis (FSGS) affecting children and adults. In addition, acquired glomerular diseases are associated with increased expression levels of TRPC6. However, the exact role of TRPC6 in the pathogenesis(More)
Recent studies have described that the Notch signaling pathway is activated in a wide range of renal diseases. Angiotensin II (AngII) plays a key role in the progression of kidney diseases. AngII contributes to renal fibrosis by upregulation of profibrotic factors, induction of epithelial mesenchymal transition and accumulation of extracellular matrix(More)
A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in(More)