Learn More
Inflammatory cell infiltration plays a key role in the onset and progression of renal injury. The NF-kappaB participates in the inflammatory response, regulating many proinflammatory genes. Angiotensin II (Ang II), via AT(1) and AT(2) receptors, activates NF-kappaB. Although the contribution of Ang II to kidney damage progression is already established, the(More)
Angiotensin (Ang) II, the main peptide of the renin angiotensin system (RAS), is a renal growth factor, inducing hyperplasia/hypertrophy depending on the cell type. This vasoactive peptide activates mesangial and tubular cells and interstitial fibroblasts, increasing the expression and synthesis of extracellular matrix proteins. Some of these effects seem(More)
IgA nephropathy is the most common glomerular disease worldwide, yet there is no international consensus for its pathological or clinical classification. Here a new classification for IgA nephropathy is presented by an international consensus working group. The goal of this new system was to identify specific pathological features that more accurately(More)
Mutations in the TRPC6 calcium channel (Transient receptor potential channel 6) gene have been associated with familiar forms of Focal and Segmental Glomerulosclerosis (FSGS) affecting children and adults. In addition, acquired glomerular diseases are associated with increased expression levels of TRPC6. However, the exact role of TRPC6 in the pathogenesis(More)
BACKGROUND The molecular mechanisms of renal injury in diabetic nephropathy (DN) are not completely understood, although inflammatory cells play a key role. The renin-angiotensin system (RAS) is involved in kidney damage; however, few studies have examined the localization of RAS components in human DN. Our aim was to investigate in renal biopsies the(More)
The renin-angiotensin system (RAS) has emerged as one of the essential links in the pathophysiology of vascular disease. Angiotensin (Ang) II, the main peptide of the RAS, was considered as a vasoactive hormone, but in the past years, this view has been modified to a growth factor that regulates cell proliferation/apoptosis and fibrosis. Recently, this view(More)
We have recently described that in an experimental model of atherosclerosis and in vascular smooth muscle cells (VSMCs) statins increased the activation of the Smad pathway by transforming growth factor-β (TGF-β), leading to an increase in TGF-β-dependent matrix accumulation and plaque stabilization. Angiotensin II (AngII) activates the Smad pathway and(More)
TABLES Table 1. Prevalence of HCV infection in hemodialysis patients from various countries S8 Table 2. Summary Table of baseline characteristics of hemodialysis patients tested for HCV (EIA vs. NAT) S16 Table 3. Summary Table of testing for HCV in hemodialysis patients (EIA vs. NAT) S17 Table 4. Evidence Profile for diagnostic testing for HCV in(More)
Induced in high glucose-1 (IHG-1) is an evolutionarily conserved gene transcript upregulated by high extracellular glucose concentrations, but its function is unknown. Here, it is reported that the abundance of IHG-1 mRNA is nearly 10-fold higher in microdissected, tubule-rich renal biopsies from patients with diabetic nephropathy compared with control(More)
Connective tissue growth factor (CTGF) has been described as a novel fibrotic mediator. CTGF is overexpressed in several kidney diseases and is induced by different factors involved in renal injury. Angiotensin II (AngII) participates in the pathogenesis of kidney damage, contributing to fibrosis; however, whether AngII regulates CTGF in the kidney has not(More)