Learn More
The modification of cellular proteins by ubiquitin (Ub) is an important event that underlies protein stability and function in eukaryotes. Protein ubiquitylation is a dynamic and reversible process; attached Ub can be removed by deubiquitylating enzymes (DUBs), a heterogeneous group of cysteine proteases that cleave proteins precisely at the Ub-protein(More)
The kinesin Eg5 plays an essential role in bipolar spindle formation. A variety of structurally diverse inhibitors of the human kinesin Eg5, including monastrol and STLC, share the same binding pocket on Eg5, composed by helix alpha2/loop L5, and helix alpha3 of the Eg5 motor domain. Previous biochemical analysis in the inhibitor binding pocket of Eg5(More)
Ubiquitylation, the modification of cellular proteins by the covalent attachment of ubiquitin, is critical for diverse biological processes including cell cycle progression, signal transduction and stress response. This process can be reversed and regulated by a group of proteases called deubiquitylating enzymes (DUBs). Otubains are a recently identified(More)
A recent screen for compounds that selectively targeted pancreatic cancer cells isolated UA62784. We found that UA62784 inhibits microtubule polymerization in vitro. UA62784 interacts with tubulin dimers ten times more potently than colchicine, vinblastine, or nocodazole. Competition experiments revealed that UA62784 interacts with tubulin at or near the(More)
Amitozyn (Am) is a semi-synthetic drug produced by the alkylation of major celandine (Chelidonium majus L.) alkaloids with the organophosphorous compound N,N'N'-triethylenethiophosphoramide (ThioTEPA). We show here that the treatment of living cells with Am reversibly perturbs the microtubule cytoskeleton, provoking a dose-dependent cell arrest in the M(More)
The Rab small G-protein family plays important roles in eukaryotes as regulators of vesicle traffic. In Rab proteins, the hydrolysis of GTP to GDP is coupled with association with and dissociation from membranes. Conformational changes related to their different nucleotide states determine their effector specificity. The crystal structure of human neuronal(More)
The use of cytotoxic agents to eliminate cancer cells is limited because of their nonselective toxicity and unwanted side effects. One of the strategies to overcome these limitations is to use latent prodrugs that become toxic in situ after being enzymatically activated in target cells. In this work we describe a method for producing tumor-specific toxins(More)
Human kinesin CENP-E is an attractive target for cancer chemotherapy. The allosteric CENP-E inhibitor GSK923295 was proposed as a promising anticancer compound with potent cytostatic effect. In our work, we have analyzed the influence of the Pgp efflux pump on the cytostatic effect of GSK923295. We have demonstrated that multidrug resistant MESSA Dx5 cells(More)
Malaria caused by Plasmodium falciparum is the most virulent form of malaria, leading to approximately a half million deaths per year. Chemotherapy continues to be a key approach in malaria prevention and treatment. Due to widespread parasite drug resistance, identification and development of new anti-malarial compounds remains an important task of malarial(More)