Learn More
tRNA is best known for its function as amino acid carrier in the translation process, using the anticodon loop in the recognition process with mRNA. However, the impact of tRNA on cell function is much wider, and mutations in tRNA can lead to a broad range of diseases. Although the cloverleaf structure of tRNA is well-known based on X-ray-diffraction(More)
The efficient synthesis of oligonucleotides containing 2'-O-beta-D-ribofuranosyl (and beta-D-ribopyranosyl)nucleosides, 2'-O-alpha-D-arabinofuranosyl (and alpha-L-arabinofuranosyl)nucleosides. 2'-O-beta-D-erythrofuranosylnucleosides, and 2'-O-(5'-amino-5-deoxy-beta-D-ribofuranosyl)nucleosides have been developed.
The parameters of the hydrolysis of ATP and several analogs by soluble mitochondrial ATPase were determined. Vmax of the reaction decreases within the range: 2'-desoxy-ATP greater than ATP greater than etheno-ATP greater than GTP greater than 3'-O-methylATP greater than UTP. ATP, 2'-desoxypATP, 3'O-methyl-ATP, GTP, and etheno-ATP are hydrolysed by soluble(More)
A new anticytokinin N 6 (benzyloxymethyl)adee nosine (BOMA), an antagonist of the cytokinin recepp tor CRE1/AHK4 of Arabidopsis, was found among the synthetic derivatives of N 6 adenosine. The new antii cytokinin BOMA, described by us, is highly specific: it inhibits the activation of the CRE1/AHK4 receptor but not the AHK3 receptor with a similar(More)
While the effects of bisphosphonates on bone-resorbing osteoclasts have been well documented, the effects of bisphosphonates on other cell types are not as well studied. Recently, we reported that bisphosphonates have direct effects on bone-forming human fetal osteoblast cells (hFOB) [1]. In this report, the role of the mevalonate pathway in the actions of(More)
The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications(More)
To create new, effective reagents for affinity modification of restriction-modification (R-M) enzymes, a regioselective method for reactive dialdehyde group incorporation into oligonucleotides, based on insertion of a 1-beta-D-galactopyranosylthymine residue, has been developed. We synthesized DNA duplex analogs of the substrates of the Eco RII and Mva I(More)
Oligonucleotides of a novel type containing 2'-O-beta-ribofuranosyl-cytidine were synthesized and further oxidized to yield T7 consensus promoters with dialdehyde groups. Both types of oligonucleotides were tested as templates, inhibitors, and affinity reagents for T7 RNA polymerase and its mutants. All oligonucleotides tested retained high affinity towards(More)
Affinity modification of EcoRII DNA methyltransferase (M x EcoRII) by DNA duplexes containing oxidized 2'-O-beta-D-ribofuranosylcytidine (Crib*) or 1-(beta-D-galactopyranosyl)thymine (Tgal*) residues was performed. Cross-linking yields do not change irrespective of whether active Crib* replaces an outer or an inner (target) deoxycytidine within the EcoRII(More)