Learn More
Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models. The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently(More)
Recent proliferation of a cheap but quality depth sensor, the Microsoft Kinect, has brought the need for a challenging category-level 3D object detection dataset to the fore. We review current 3D datasets and find them lacking in variation of scenes, categories, instances, and viewpoints. Here we present our dataset of color and depth image pairs, gathered(More)
Convolutional Neural Networks (CNNs) can provide accurate object classification. They can be extended to perform object detection by iterating over dense or selected proposed object regions. However, the runtime of such detectors scales as the total number and/or area of regions to examine per image, and training such detectors may be prohibitively slow.(More)
The style of an image plays a significant role in how it is viewed, but style has received little attention in computer vision research. We describe an approach to predicting style of images, and perform a thorough evaluation of different image features for these tasks. We find that features learned in a multi-layer network generally perform best – even(More)
Existing methods for visual recognition based on quantized local features can perform poorly when local features exist on transparent surfaces, such as glass or plastic objects. There are characteristic patterns to the local appearance of transparent objects, but they may not be well captured by distances to individual examples or by a local pattern(More)
Humans are capable of perceiving a scene at a glance, and obtain deeper understanding with additional time. Similarly, visual recognition deployments should be robust to varying computational budgets. Such situations require Anytime recognition ability, which is rarely considered in computer vision research. We present a method for learning dynamic policies(More)
Effective robotic interaction with household objects requires the ability to recognize both object instances and object categories. The former are often characterized by locally discriminative texture cues (e.g., instances with prominent brand names and logos), and the latter by salient global shape properties (plates, bowls, pots). We describe experiments(More)
Layered representations for object recognition are important due to their increased invariance, biological plau-sibility, and computational benefits. However, most of existing approaches to hierarchical representations are strictly feedforward, and thus not well able to resolve local ambiguities. We propose a probabilistic model that learns and infers all(More)