Learn More
S everal mammalian enzymes are capable of transferring electrons to molecular oxygen, sequentially forming the 1 electron-reduction product superoxide (O 2 ⅐Ϫ) and the 2 electron-reduction product hydrogen peroxide (H 2 O 2). These serve as progenitors for other reactive oxygen species (ROS), including peroxynitrite (ONOO Ϫ), hypochlorous acid, the hydroxyl(More)
Hypertension promotes atherosclerosis and is a major source of morbidity and mortality. We show that mice lacking T and B cells (RAG-1-/- mice) have blunted hypertension and do not develop abnormalities of vascular function during angiotensin II infusion or desoxycorticosterone acetate (DOCA)-salt. Adoptive transfer of T, but not B, cells restored these(More)
Hypertension caused by angiotensin II is dependent on vascular superoxide (O2*-) production. The nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase is a major source of vascular O2*- and is activated by angiotensin II in vitro. However, its role in angiotensin II-induced hypertension in vivo is less clear. In the present studies, we used mice(More)
BACKGROUND Impaired flow-dependent, endothelium-mediated vasodilation (FDD) in patients with chronic heart failure (CHF) results, at least in part, from accelerated degradation of nitric oxide by oxygen radicals. The mechanisms leading to increased vascular radical formation, however, remain unclear. Therefore, we determined endothelium-bound activities of(More)
Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial(More)
BACKGROUND Reactive oxygen species (ROS) have been implicated in the development of cardiovascular pathologies. NAD(P)H oxidases (Noxes) are major sources of reactive oxygen species in the vessel wall, but the importance of individual Nox homologues in specific layers of the vascular wall is unclear. Nox1 upregulation has been implicated in cardiovascular(More)
Atherosclerosis is an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions including oscillatory shear stress (OS). OS exposure induces endothelial expression of bone morphogenic protein 4 (BMP4), which in turn may activate intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesion. OS is(More)
BACKGROUND Increased inactivation of nitric oxide by superoxide (O2*-) contributes to endothelial dysfunction in patients with coronary disease (CAD). We therefore characterized the vascular activities of xanthine oxidase and NAD(P)H oxidase, 2 major O2*--producing enzyme systems, and their relationship with flow-dependent, endothelium-mediated vasodilation(More)
An essential cofactor for the endothelial NO synthase is tetrahydrobiopterin (H4B). In the present study, we show that in human endothelial cells, laminar shear stress dramatically increases H4B levels and enzymatic activity of GTP cyclohydrolase (GTPCH)-1, the first step of H4B biosynthesis. In contrast, protein levels of GTPCH-1 were not affected by(More)
BACKGROUND Atrial fibrillation (AF) is associated with an increased risk of stroke due almost exclusively to emboli from left atrial appendage (LAA) thrombi. Recently, we reported that AF was associated with endocardial dysfunction, limited to the left atrium (LA) and LAA and manifest as reduced nitric oxide (NO*) production and increased expression of(More)