Sergey Grishin

Learn More
We have shown previously that ATP inhibits transmitter release at the neuromuscular junction through the action on metabotropic P2Y receptors coupled to specific second messenger cascades. In the present study we recorded K(+) or Ca(2+) currents in motor nerve endings or blocked K(+) or Ca(2+) channels in order to explore the nature of downstream(More)
The postsynaptic membrane of the neuromuscular synapse treated with antiacetylcholinesterase is depolarized due to nonquantal release of acetylcholine (ACh) from the motor nerve ending. This can be demonstrated by the hyperpolarization produced by the application of curare (H-effect). ATP (1 x 10-5 M) decreased the magnitude of the H-effect from 5 to 1.5(More)
Corelease of ATP with ACh from motor endings suggests a physiological role for ATP in synaptic transmission. We previously showed that, on skeletal muscle, ATP directly inhibited ACh release via presynaptic P2 receptors. The receptor identification (P2X or P2Y) and its transduction mechanism remained, however, unknown. In the present study using the(More)
In this paper we propose a novel super-resolution algorithm based on motion compensation and edge-directed spatial interpolation succeeded by fusion via pixel classification. Two high-resolution images are constructed, the first by means of motion compensation and the second by means of edge-directed interpolation. The AdaBoost classifier is then used to(More)
The inhibitory effects of ATP and adenosine on the nerve-mediated contractile responses of isolated sartorius muscle of the frog, Rana ridibunda, evoked by electrical field stimulation (EFS) were studied using pharmacological organ-bath technique. The effects of hydrocortisone applied in vitro and in vivo on contractility of sartorius muscle were also(More)
The contractile responses of isolated Rana ridibunda frog sartorius muscle contractions evoked by electrical field stimulation (EFS) were studied at three temperature conditions of 17, 22 and 27 degrees C. Temperature-dependent increase of muscle contractility was found. ATP (10-100 microM) concentration dependently inhibited the electrical field(More)
We have studied the mechanisms of paired-pulse facilitation (PPF) of neurotransmitter release in isolated nerve-muscle preparations of the frog cutaneous pectoris muscle. In normal extracellular Ca2+ concentration ([Ca2+]o, 1.8 mM), as the interpulse interval was increased from 5 to 500 ms, PPF decayed as a sum of two exponential components: a larger but(More)
Algorithms for video content compression have been developed very fast during last years. But most of them are still lossy. This fact leads to different artifacts appearing in compressed video due to information losses. Objective metric for blocking artifacts detection and a number of methods for blurring estimation are proposed in this article. They can(More)
During normal cell metabolism the production of intracellular ATP is associated with the generation of reactive oxygen species (ROS), which appear to be important signalling molecules. Both ATP and ROS can be released extracellularly by skeletal muscle during intense activity. Using voltage clamp recording combined with imaging and biochemical assay of ROS,(More)
Apart from acetyl-choline (Ach), adenosine-5'-trisphosphate (ATP) is thought to play a role in neuromuscular function, however little information is available on its cellular physiology. As such, effects of ATP and adenosine on contractility of mice diaphragmatic and skeletal muscles (m. extensor digitorum longa-MEDL) have been investigated in in vitro(More)