Learn More
We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M(1)); and 1 alkali, alkaline earth or 3d/4d transition metal atom (M(2)) plus two to five (BH(4))(-) groups, i.e.,(More)
CO oxidation on Pt nanoclusters of approximately 1 nm in size was studied using density functional theory (DFT). Reaction barriers on various sites of a cuboctahedral 55-atom cluster and of several two-layer plane clusters representing (111) and (100) facets of the 147-atom cluster have been calculated at various coverage. The effect of atomic structure of(More)
Scanning tunneling microscopy (STM) has been used to study the adsorption of 1-fluoro-, 1-chloro-, and 1-bromo-substituted C(12) alkanes at the Si(111)-7 x 7 surface, at temperatures from 300 to 500 K. We report self-assembly of these physisorbed adsorbates, C(12)H(25)X, to form approximately circular corrals, (C(12)H(25)X)(2), with charge transfer to a(More)
Long-chain organic molecules, 1-halododecane, RX (X = Cl,Br), adsorbed on Si(111)-7 x 7 were shown to form stable dimeric corrals; type I around corner holes and type II around corner adatoms S. Dobrin et al. [Surf. Sci. Lett. 600, L43 (2006)]. Here we examine the molecular dynamics of corral formation, in which mobile physisorbed adsorbates spontaneously(More)
A sub-monolayer of atomic sodium was deposited on a LiF(001) surface at 40 K. The adsorbed sodium exists at the surface as single atoms and clusters. The surface was dosed with 1 L of HF, to form adsorbed (HF)2...Na(n) (n=1,2,3,...) complexes, which were then irradiated by 640 nm laser light, to induce charge-transfer reaction. The reaction-product atomic(More)
Reaction between 1,2-dibromobenzene and the Si(111)-7x7 surface has been studied theoretically on the DFT(B3LYP/6-31G(d)) level. A 12-atom silicon cluster, representing two adatoms and one rest atom of the faulted half of the unit cell, was used to model the silicon surface. The first step of the reaction was a covalent attachment (chemisorption) of an(More)
  • 1