Sergey A. Trushin

Learn More
Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the(More)
Acute HIV-1 infection of CD4 T cells often results in apoptotic death of infected cells, yet it is unclear what evolutionary advantage this offers to HIV-1. Given the independent observations that acute T cell HIV-1 infection results in (1) NF-kappaB activation, (2) caspase 8 dependent apoptosis, and that (3) caspase 8 directly activates NF-kappaB, we(More)
BACKGROUND HIV envelope glycoprotein gp120 causes cellular activation resulting in anergy, apoptosis, proinflammatory cytokine production, and through an unknown mechanism, enhanced HIV replication. METHODOLOGY/PRINCIPAL FINDINGS We describe that the signals which promote apoptosis are also responsible for the enhanced HIV replication. Specifically, we(More)
Development of therapeutic strategies to prevent Alzheimer's Disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies(More)
After a primary immune response, T cell memory occurs when a subset of Ag-specific T cells resists peripheral selection by acquiring resistance to TCR-induced death. Recent data have implicated Bcl-2 interacting mediator of death (Bim) as an essential mediator of the contraction phase of T cell immunity. In this article, we describe that stromal-derived(More)
OBJECTIVE HIV gp120 is a pleiotropic protein present in the plasma and tissues of HIV-infected patients, which affects a variety of homeostatic functions. In this report, we examine the mechanism of how gp120 blocks CD4 T cells from migrating towards SDF-1α. METHODS In vitro treatment of primary CD4 T cells with CXCR4 tropic gp120, SDF, and measurement of(More)
HIV-infected patients exhibit quantitative and qualitative defects in CD4 T cells, including having increased numbers of CD4+CD45R0+/CD45RA+ T cells, although it remains unclear how these cells arise. Here we demonstrate that gp120 treatment of activated but not resting primary human CD4 T cells decreases number of cells with single positive CD45R0+/CD45RA-(More)
  • 1