Learn More
Na(+)-K(+)-ATPase is an integral membrane protein crucial for the maintenance of ion homeostasis and skeletal muscle contractibility. Skeletal muscle Na(+)-K(+)-ATPase content displays remarkable plasticity in response to long-term increase in physiological demand, such as exercise training. However, the adaptations in Na(+)-K(+)-ATPase function in response(More)
Serum starvation is one of the most frequently performed procedures in molecular biology and there are literally thousands of research papers reporting its use. In fact, this method has become so ingrained in certain areas of research that reports often simply state that cells were serum starved without providing any factual details as to how the procedure(More)
Astrocytes have a key role in the clearance and inactivation of histamine in the adult central nervous system, but transporters which mediate histamine uptake into astrocytes have not been fully characterized. We therefore investigated the kinetic and molecular characteristics of histamine uptake into cultured adult rat astrocytes. [(3)H]-histamine was(More)
Organophosphorus compounds (OPs) and oximes may interfere with other molecules than AChE in the living systems, affecting in this way various cellular processes and underlying mechanisms. These non-cholinergic effects may contribute to the clinical status in OP poisoning and therefore deserve equal scientific attention. Here, we investigated the effects of(More)
Contraction stimulates Na(+),K(+)-ATPase and AMP-activated protein kinase (AMPK) activity in skeletal muscle. Whether AMPK activation affects Na(+),K(+)-ATPase activity in skeletal muscle remains to be determined. Short term stimulation of rat L6 myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), activates AMPK and(More)
Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have(More)
Potential nanoparticle (NP) toxicity is one of crucial problems that limit the applicability of NPs. When designing NPs for biomedical and biotechnological applications it is thus important to understand the mechanisms of their toxicity. In this study, we analysed the stress responses of previously designed polyacrylic acid (PAA) and polyethylenimine (PEI)(More)
Phospholemman (PLM, FXYD1) is a partner protein and regulator of the Na(+)-K(+)-ATPase (Na(+)-K(+) pump). We explored the impact of acute and short-term training exercise on PLM physiology in human skeletal muscle. A group of moderately trained males (n = 8) performed a 1-h acute bout of exercise by utilizing a one-legged cycling protocol. Muscle biopsies(More)
Methotrexate (MTX) is a widely used anticancer and antirheumatic drug that has been postulated to protect against metabolic risk factors associated with type 2 diabetes, although the mechanism remains unknown. MTX inhibits 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) and thereby slows the(More)
BACKGROUND Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC) in(More)