Learn More
Peroxynitrite (ONOO(-)), a toxic product of the free radicals nitric oxide and superoxide, has been implicated in the pathogenesis of CNS inflammatory diseases, including multiple sclerosis and its animal correlate experimental autoimmune encephalomyelitis (EAE). In this study we have assessed the mode of action of uric acid (UA), a purine metabolite and(More)
The mouse-adapted rabies virus strain CVS-24 has stable variants, CVS-B2c and CVS-N2c, which differ greatly in their pathogenicity for normal adult mice and in their ability to infect nonneuronal cells. The glycoprotein (G protein), which has previously been implicated in rabies virus pathogenicity, shows substantial structural differences between these(More)
Uric acid (UA), a product of purine metabolism, is a known scavenger of peroxynitrite (ONOO(-)), which has been implicated in the pathogenesis of multiple sclerosis and experimental allergic encephalomyelitis (EAE). To determine whether the known therapeutic action of UA in EAE is mediated through its capacity to inactivate ONOO(-) or some other(More)
A recombinant rabies virus (RV) carrying two identical glycoprotein (G) genes (SPBNGA-GA) was constructed and used to determine the effect of RV G overexpression on cell viability and immunity. Immunoprecipitation analysis and flow cytometry showed that tissue culture cells infected with SPBNGA-GA produced, on average, twice as much RV G as cells infected(More)
When grown for energy production instead for smoking, tobacco can generate a large amount of inexpensive biomass more efficiently than almost any other agricultural crop. Tobacco possesses potent oil biosynthesis machinery and can accumulate up to 40% of seed weight in oil. In this work, we explored two metabolic engineering approaches to enhance the oil(More)
A new approach to the production and delivery of vaccine antigens is the use of engineered amino virus-based vectors. A chimeric peptide containing antigenic determinants from rabies virus glycoprotein (G protein) (amino acids 253-275) and nucleoprotein (N protein) (amino acids 404-418) was PCR-amplified and cloned as a translational fusion product with the(More)
Uric acid, the naturally occurring product of purine metabolism, is a strong peroxynitrite scavenger, as demonstrated by the capacity to bind peroxynitrite but not nitric oxide (NO) produced by lipopolysaccharide-stimulated cells of a mouse monocyte line. In this study, we used uric acid to treat experimental allergic encephalomyelitis (EAE) in the PLSJL(More)
Plant genetic engineering led to the production of plant-derived mAb (mAbP), which provides a safe and economically feasible alternative to the current methods of antibody production in animal systems. In this study, the heavy and light chains of human anti-rabies mAb were expressed and assembled in planta under the control of two strong constitutive(More)
Peroxynitrite has been implicated in the pathogenesis of multiple sclerosis (MS) and its animal model experimental allergic encephalomyelitis (EAE). Previously, we have shown that administration of uric acid (UA), a peroxynitrite scavenger, is therapeutic in EAE We have also shown that MS patients have lower levels of serum uric acid than healthy(More)
Uric acid (UA) is a purine metabolite that selectively inhibits peroxynitrite-mediated reactions implicated in the pathogenesis of multiple sclerosis (MS) and other neurodegenerative diseases. Serum UA levels are inversely associated with the incidence of MS in humans because MS patients have low serum UA levels and individuals with hyperuricemia (gout)(More)