Learn More
A conductometric biosensor using immobilised Chlorella vulgaris microalgae as bioreceptors was used as a bi-enzymatic biosensor. Algae were immobilised inside bovine serum albumin membranes reticulated with glutaraldehyde vapours deposited on interdigitated conductometric electrodes. Local conductivity variations caused by algae alkaline phosphatase and(More)
A novel biosensor based on immobilised whole cell Chlorella vulgaris microalgae as a bioreceptor and interdigitated conductometric electrodes as a transducer has been developed and tested for alkaline phosphatase activity (APA) analysis. These sensors were also used for the detection of toxic compounds, namely cadmium ions, in aquatic habitats. Algae were(More)
A differential pair of planar thin-film interdigitated electrodes, deposited on a ceramic pad, was used as a conductometric transducer. The three-enzyme system (invertase, mutarotase, glucose oxidase), immobilized on the transducer surface, was used as a bioselective element. The ratio between enzymes in the membrane was found experimentally considering the(More)
The application of silicalite for improvement of enzyme adsorption on new stainless steel electrodes is reported. Glucose oxidase (GOx) was immobilized by two methods: cross-linking by glutaraldehyde (GOx-GA) and cross-linking by glutaraldehyde along with GOx adsorption on silicalite-modified electrode (SME) (GOx-SME-GA). The GOx-SME-GA biosensors were(More)
The key theoretical principles of the work on ion-selective field-effect transistor connected with their application in bioanalytical practice, some specifics of modern microtechnologies for their creation, and measurement schemes with set-ups are discussed. The achievements in the creation of enzyme biosensors based on ion-selective field-effect(More)
This review presents the principles of conductometric measurements in ionic media and the equivalent electrical circuits of different designs for conductometric measurements. These types of measurements were first applied for monitoring biocatalytic reactions. The use of conductometric microtransducers is then presented and detailed in the case of pollutant(More)
The determination of diuron, atrazine, desisopropylatrazine (DIA) and desethylatrazine (DEA) were investigated using conductometric tyrosinase biosensor. Tyrosinase was immobilised on the biosensor sensitive part by allowing it to mix with bovine serum albumin (BSA) and then cross-linking in saturated glutaraldehyde (GA) vapour for 30min. The determination(More)
This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap(More)
Two novel impedimetric biosensors for highly sensitive and rapid quantitative detection of diazinon in aqueous medium were developed using two types of lipase, from Candida Rugosa (microbial source) (CRL) and from porcine pancreas (animal source) (PPL) immobilized on functionalized gold electrode. Lipase is characterized to specifically catalyze the(More)
An enzyme biosensor for the determination of 4-chlorophenol in water solutions based on potentiometric pH-sensitive field-effect transistors as semiconductor transducer and tyrosinase immobilised in saturated glutaraldehyde vapours as biorecognition element has been described for the first time. The main analytical characteristics were studied under(More)