Sergei V Chapyshev

Learn More
First W-band 94 GHz EPR spectra of randomly oriented triplet, quintet, and septet nitrenes formed during the photolysis of 1,3,5-triazido-2,4,6-tribromobenzene in cryogenic matrices are reported. In comparison with conventional X-band 9 GHz electron paramagnetic resonance (EPR) spectroscopy, W-band EPR spectroscopy allows the detection and complete(More)
The high resolution 9 GHz electron paramagnetic resonance (EPR) spectrum of septet pyridyl-2,4,6-trinitrene was recorded after the photolysis of 2,4,6-triazido-3,5-dichloropyridine in solid argon matrix at 15 K. Owing to the high resolution of the experimental EPR spectrum, the zero-field splitting parameters of the septet trinitrene were determined with a(More)
2,4,6-Triazido-s-triazine, 2,4,6-triazidopyrimidine and six different 2,4,6-triazidopyridines were studied by (15)N NMR spectroscopy. The assignment of signals in the spectra was performed using the gauge-independent atomic orbital (GIAO)-Tao-Perdew-Staroverov-Scuseria exchange-correlation functional (TPSS)h/6-311+G(d,p) calculations on the(More)
High-spin organic molecules with dominant spin-orbit contribution to magnetic anisotropy are reported. Quintet 4-azido-3,5-dibromopyridyl-2,6-dinitrene (Q-1), quintet 2-azido-3,5-dibromopyridyl-4,6-dinitrene (Q-2), and septet 3,5-dibromopyridyl-2,4,6-trinitrene (S-1) were generated in solid argon matrices by ultraviolet irradiation of(More)
The heavy atom effect on the magnetic anisotropy of septet trinitrenes is reported. Septet 1-bromo-3,5-dichloro-2,4,6-trinitrenobenzene (S-1) was generated in a solid argon matrix by ultraviolet irradiation of 1,3,5-triazido-2-bromo-4,6-dichlorobenzene. This trinitrene displays an electron spin resonance (ESR) spectrum that drastically differs from ESR(More)
In contrast to theoretical expectations, the photolysis of 2,4,6-triazido-3-chloro-5-fluoropyridine in argon at 5 K gives rise to EPR peaks of just two triplet mononitrenes, two quintet dinitrenes, and a septet trinitrene. EPR spectral simulations in combination with DFT calculations show that observable nitrenes can be assigned to triplet(More)
Septet 2,4,6-trinitrenotoluene is the major paramagnetic product formed during the photolysis of 2,4,6-triazidotoluene in cryogenic matrices. This trinitrene displays different electron paramagnetic resonance (EPR) spectra in solid argon and in 2-methyltetrahydrofuran (2MTHF) glass, corresponding to septet spin states with the zero-field splitting (ZFS)(More)
Septet 3,5-difluoropyridyl-2,4,6-trinitrene along with quintet 2-azido-3,5-difluoropyridyl-4,6-dinitrene, quintet 4-azido-3,5-difluoropyridyl-2,6-dinitrene, triplet 2,6-diazido-3,5-difluoropyridyl-4-nitrene, and triplet 2,4-diazido-3,5-difluoropyridyl-6-nitrene have been obtained by photolysis of 2,4,6-triazido-3,5-difluoropyridine in solid argon at 4 K.(More)
The fine-structure (FS) parameters D of a series of D3h symmetric septet trinitrenes were analyzed theoretically using density functional theory (DFT) calculations and compared with the experimental D values derived from ESR spectra. ESR studies show that D3h symmetric septet 1,3,5-trichloro-2,4,6-trinitrenobenzene with D = -0.0957 cm(-1) and E = 0 cm(-1)(More)
The key intermediates of decomposition of high-energy 2,4,6-triazidopyrimidine and its 5-chloro-substituted derivative, the detonation of which is used for preparation of carbon nitrides, were investigated using electron paramagnetic resonance (EPR) spectroscopy in combination with quantum chemical calculations. The decomposition of the triazides was(More)