Sergei Tretiak

Learn More
We report on the dynamics of resonant energy transfer in monodisperse, mixed-size, and energy-gradient (layered) assemblies of CdSe nanocrystal quantum dots. Time-resolved and spectrally resolved photoluminescence directly reveals the energy-dependent transfer rate of excitons from smaller to larger dots via electrostatic coupling. The data show a rapid(More)
A nonlinear conjugate gradient optimization scheme is used to obtain excitation energies within the random phase approximation (RPA). The solutions to the RPA eigenvalue equation are located through a variational characterization using a modified Thouless functional, which is based upon an asymmetric Rayleigh quotient, in an orthogonalized atomic orbital(More)
We employ scanning tunneling microscopy (STM) to reveal the structure of DNA-carbon nanotube complexes with unprecedented spatial resolution and compare our experimental results to molecular dynamics simulations. STM images show strands of DNA wrapping around (6,5) nanotubes at approximately 63 degrees angle with a coiling period of 3.3 nm, in agreement(More)
Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff(More)
We theoretically investigate the role of conformational disorder and intermolecular interactions on the localization properties of electronic states, leading to the formation of carrier traps in amorphous aggregates of conjugated polymers. Samples of amorphous conformations of poly(p-phenylene vinylene) (PPV), poly2-methoxy-5-(2-ethyl-hexyloxy)PPV(More)
The antioxidant and anticancer properties of dirhenium dicarboxylates of cis- and transconfiguration with different organic ligands in a model of tumor growth (Guerin carcinoma) were studied. It was shown that compounds of different configuration had similar antitumor effect, and dirhenium (III) cis-dicarboxylates were characterized by higher antioxidant(More)
State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated(More)
Three-dimensional organic-inorganic perovskites have emerged as one of the most promising thin-film solar cell materials owing to their remarkable photophysical properties, which have led to power conversion efficiencies exceeding 20 per cent, with the prospect of further improvements towards the Shockley-Queisser limit for a single‐junction solar cell(More)
We report a two-step synthesis of highly luminescent CdS/ZnSe core/shell nanocrystals (emission quantum yields up to 50%) that can produce efficient spatial separation of electrons and holes between the core and the shell (type-II localization regime). Our synthesis involves fabrication of cubic-singony CdS core particles that are subsequently overcoated(More)
We investigate the impact of ligands on the morphology, electronic structure, and optical response of the Cd(33)Se(33) cluster, which overlaps in size with the smallest synthesized CdSe nanocrystal quantum dots (QDs). Our density functional theory calculations demonstrate significant surface reorganization for both the bare cluster and the cluster capped(More)