Sergei S. Sazhin

Learn More
A numerical algorithm for kinetic modelling of droplet evaporation processes is suggested. This algorithm is focused on the direct numerical solution of the Boltzmann equations for two gas components: vapour and air. The physical and velocity spaces are discretised, and the Boltzmann equations are presented in discretised forms. The solution of these(More)
Molecular dynamics simulations are performed to study the evaporation and condensation of n-dodecane (C(12)H(26)) at temperatures in the range 400-600 K. A modified optimized potential for liquid simulation model is applied to take into account the Lennard-Jones, bond bending and torsion potentials with the bond length constrained. The equilibrium(More)
A kinetic model for droplet heating and evaporation into a high pressure background gas (air) is described. This model is based on the introduction of the kinetic region around evaporating droplets, where the dynamics of molecules are described in terms of the Boltzmann equations for vapour and air. Both mass and heat transfer processes in this region are(More)
This study uses spatio–temporal stability analysis to investigate the convective and absolute instability properties of a steady unconfined planar liquid jet. The approach uses a piecewise linear velocity profile with a finite thickness shear layer at the edge of the jet. This study investigates how properties such as the thickness of the shear layer and(More)
Several approaches to numerical modelling of liquid droplet heating and evaporation by convection and radiation from the surrounding hot gas are discussed. The finite thermal conductivity of liquid, recirculation in droplets, and time dependence of gas temperature and the convection heat transfer coefficient are taken into account. For the constant and(More)
The evaporation/condensation coefficient (β) and the evaporation rate (γ) for n-dodecane vs. temperature, gas pressure, gas and liquid density, and solvation effects at a droplet surface are analysed using quantum chemical density functional theory calculations of several ensembles of conformers of n-dodecane molecules in the gas phase (hybrid functional(More)
In this paper a breakup model for analysing the evolution of transient fuel sprays characterised by a coherent liquid core emerging from the injection nozzle, throughout the injection process, is proposed. The coherent liquid core is modelled as a liquid jet and a breakup model is formulated. The spray breakup is described using a composite model that(More)