Learn More
Spectrofluorimetric measurements on single-walled carbon nanotubes (SWNTs) isolated in aqueous surfactant suspensions have revealed distinct electronic absorption and emission transitions for more than 30 different semiconducting nanotube species. By combining these fluorimetric results with resonance Raman data, each optical transition has been mapped to a(More)
Fluorescence has been observed directly across the band gap of semiconducting carbon nanotubes. We obtained individual nanotubes, each encased in a cylindrical micelle, by ultrasonically agitating an aqueous dispersion of raw single-walled carbon nanotubes in sodium dodecyl sulfate and then centrifuging to remove tube bundles, ropes, and residual catalyst.(More)
Frequency-resolved femtosecond transient absorption spectra and kinetics measured by optical excitation of the second and first electronic transitions of the (8,3) single-walled carbon nanotube species reveal a unique mutual response between these transitions. Based on the analysis of the spectra, kinetics, and their distinct amplitude dependence on the(More)
Controlled chemical modifications of single-walled carbon nanotubes (SWCNTs) that tune their useful properties have been sought for multiple applications. We found that beneficial optical changes in SWCNTs resulted from introducing low concentrations of oxygen atoms. Stable covalently oxygen-doped nanotubes were prepared by exposure to ozone and then light.(More)
Ultrafast carrier dynamics in individual semiconducting single-walled carbon nanotubes was studied by femtosecond transient absorption and fluorescence measurements. After photoexcitation of the second van Hove singularity of a specific tube structure, the relaxation of electrons and holes to the fundamental band edge occurs to within 100 fs. The(More)
The exciton binding energy serves as a critical criterion for identification of the nature of elementary excitations (neutral excitons versus a pair of charged carriers) in semiconductor materials. An exciton binding energy of 0.41 eV is determined experimentally for a selected nanotube type, the (8,3) tube, confirming the excitonic nature of the elementary(More)
We report femtosecond transient absorption kinetics measured for selected semiconducting single-walled carbon nanotubes at different temperatures between 77 and 290 K. The nanotubes are embedded in a thin polymethylmethacrylate film, and the dominance of individual species enabled to probe selectively the kinetics associated with two desired tube types, the(More)
  • 1