#### Filter Results:

- Full text PDF available (4)

#### Publication Year

1996

2010

- This year (0)
- Last 5 years (0)
- Last 10 years (3)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- S Friedland, S Gaubert, L Han
- 2009

In this paper we prove an analog of Perron-Frobenius theorem for multilinear forms with nonnegative coefficients.

- S. Friedland, S. Gaubert
- 2010

We extend the multiplicative submodularity of the principal determinants of a nonnegative definite hermitian matrix to other spectral functions. We show that if f is the primitive of a function that is operator monotone on an interval containing the spectrum of a hermitian matrix A, then the function I → trf (A[I]) is supermodular, meaning that trf… (More)

- S Friedland, G Ochs
- 1996

x0. Introduction Let X be a compact metric space and assume that f : X ! X is a continuous map. Denote by the nonwandering set of f. An interesting and a nontrivial invariant of f is HD(()-the Hausdorr dimension of. It is usually a highly nontrivial problem to nd HD((). The seminal work of Bowen Bow2] gives HD(() as the solution to P(tt) = 0 for some… (More)

- Sergei Friedland, Stéphane Gaubert
- ArXiv
- 2010

- S Friedland, G Ochs
- 1997

Let X be a compact metric space and assume that f : X ! X is a continuous map. Denote by the nonwandering set of f. An interesting and a nontrivial invariant of f is HD(()-the Hausdorr dimension of. It is usually a highly nontrivial problem to nd HD((). The seminal work of Bowen Bow2] gives HD(() as the solution to P(tt) = 0 for some special expanding maps.… (More)

- ‹
- 1
- ›