Serge Ostrovidov

Learn More
To engineer tissue-like structures, cells must organize themselves into three-dimensional (3D) networks that mimic the native tissue microarchitecture. Microfabricated hydrogel substrates provide a potentially useful platform for directing cells into biomimetic tissue architecture in vitro. Here, we present microgrooved methacrylated gelatin hydrogels as a(More)
In this study, we developed a miniaturized microfluidic-based high-throughput cell toxicity assay to create an in vitro model of Parkinson's disease (PD). In particular, we generated concentration gradients of 6-hydroxydopamine (6-OHDA) to trigger a process of neuronal apoptosis in pheochromocytoma PC12 neuronal cell line. PC12 cells were cultured in a(More)
Controlling the cellular microenvironment can be used to direct the cellular organization, thereby improving the function of synthetic tissues in biosensing, biorobotics, and regenerative medicine. In this study, we were inspired by the microstructure and biological properties of the extracellular matrix to develop freestanding ultrathin polymeric films(More)
Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner.(More)
Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are(More)
Superoxide anion (SOA) as a member of reactive oxygen species (ROS) group is involved in various physiological and pathological states. For instance, generation of SOA is known to increase with skeletal muscle contractile activity and fatigue. It is therefore important to selectively detect and accurately quantify the release of SOA within both(More)
Spatial coordination of cell orientation is of central importance in tissue/organ construction. In this study, we developed microfabricated poly(lactic-co-glycolic acid) (PLGA) nanoribbon sheets with unique structures, using spin-coating and micropatterning techniques, in order to generate a hierarchically assembled cellular structure consisting of murine(More)
  • 1