Learn More
We introduce functional MRI methods for estimating the neuronal population receptive field (pRF). These methods build on conventional visual field mapping that measures responses to ring and wedge patterns shown at a series of visual field locations and estimates the single position in the visual field that produces the largest response. The new method(More)
Human neuroimaging experiments typically localize motion-selective cortex (MT+) by contrasting responses to stationary and moving stimuli. It has long been suspected that MT+, located on the lateral surface at the temporal-occipital (TO) boundary, contains several distinct visual field maps, although only one coarse map has been measured. Using a novel(More)
Much of the visual cortex is organized into visual field maps: nearby neurons have receptive fields at nearby locations in the image. Mammalian species generally have multiple visual field maps with each species having similar, but not identical, maps. The introduction of functional magnetic resonance imaging made it possible to identify visual field maps(More)
Receptive field (RF) sizes and cortical magnification factor (CMF) are fundamental organization properties of the visual cortex. At increasing visual eccentricity, RF sizes increase and CMF decreases. A relationship between RF size and CMF suggests constancies in cortical architecture, as their product, the cortical representation of an RF (point image),(More)
Previous identification of early visual cortical areas in humans with phase-encoded retinotopic mapping techniques have relied on an accurate cortical surface reconstruction. Here a 3D phase-encoded retinotopic mapping technique that does not require a reconstruction of the cortical surface is demonstrated. The visual field sign identification is completely(More)
Distinct mechanisms underlying the visual perception of luminance- (first-order) and contrast-defined (second-order) motion have been proposed from electrophysiological, human psychophysical and neurological studies; however a cortical specialization for these mechanisms has proven elusive. Here human brain imaging combined with psychophysical methods was(More)
Antagonistic center-surround configurations are a central organizational principle of our visual system. In visual cortex, stimulation outside the classical receptive field can decrease neural activity and also decrease functional Magnetic Resonance Imaging (fMRI) signal amplitudes. Decreased fMRI amplitudes below baseline-0% contrast-are often referred to(More)
We used functional magnetic resonance imaging to assess abnormal cortical signals in humans with juvenile macular degeneration (JMD). These signals have been interpreted as indicating large-scale cortical reorganization. Subjects viewed a stimulus passively or performed a task; the task was either related or unrelated to the stimulus. During passive(More)
Our aim was to make a quantitative comparison of the response of the different visual cortical areas to selective stimulation of the two different cone-opponent pathways [long- and medium-wavelength (L/M)- and short-wavelength (S)-cone-opponent] and the achromatic pathway under equivalent conditions. The appropriate stimulus-contrast metric for the(More)
PURPOSE In a group of humans with strabismic amblyopia, the relationship was examined between the structure and function of different brain regions. Three question were addressed: (1) Is the lateral geniculate nucleus (LGN) in humans with amblyopia structurally as well as functionally abnormal? (2) Do structural anomalies in the visual cortex correlate with(More)