Learn More
We describe a new algorithm for the automated segmentation of the hippocampus (Hc) and the amygdala (Am) in clinical Magnetic Resonance Imaging (MRI) scans. Based on homotopically deforming regions, our iterative approach allows the simultaneous extraction of both structures, by means of dual competitive growth. One of the most original features of our(More)
We present and evaluate a new automated method based on support vector machine (SVM) classification of whole-brain anatomical magnetic resonance imaging to discriminate between patients with Alzheimer’s disease (AD) and elderly control subjects. We studied 16 patients with AD [mean age ± standard deviation (SD) = 74.1 ± 5.2 years, mini-mental score(More)
CONTEXT According to meta-analyses, depression is associated with a smaller hippocampus. Most magnetic resonance imaging (MRI) studies among middle aged acute depressed patients are based on manual segmentation of the hippocampus. Few studies used automated methods such as voxel-based morphometry (VBM) or automated segmentation that can overcome certain(More)
The anatomical and functional organization of the lateral prefrontal cortex (LPFC) is one of the most debated issues in cognitive and integrative neurosciences. The aim of this study is to determine whether the human LPFC is organized according to the domain of information, to the level of the processing or to both of these dimensions. In order to clarify(More)
OBJECTIVE To determine whether regional atrophy or neuropsychological factors can predict the rate of decline in patients with mild Alzheimer disease (AD). BACKGROUND Despite important implications for planning the care and treatment strategy, few prognostic factors of severe AD progression are known. METHODS Twenty-three patients with mild AD were(More)
The cascade model of cognitive control, mostly relying on functional neuroimaging studies, stipulates that the lateral frontal cortex (LFC) is organized as a cascade of executive processes involving three levels of cognitive control, implemented in distinct LFC areas from the premotor to the anterior prefrontal regions. The present experiment tested this(More)
The NeuroBase project aims at studying the requirements for federating, through the Internet, information sources in neuroimaging. These sources are distributed in different experimental sites, hospitals or research centers in cognitive neurosciences, and contain heterogeneous data and image processing programs. More precisely, this project consists in(More)
We present a new clinical-radiological correlation method (AnaCOM) that aims at establishing structure-function relationships. We validated AnaCOM by assessing the location of lesions that are associated with altered performances in a well-studied task: the verbal fluency task. We retrospectively reviewed 64 brain-damaged patients who had focal lesions in a(More)
Some of the most striking symptoms after prefrontal damage are reduction of behavioral initiation and inability to suppress automatic behaviors. However, the relation between these 2 symptoms and the location of the lesions that cause them are not well understood. This study investigates the cerebral correlates of initiation and suppression abilities(More)
A modern challenge for neuroimaging techniques is to contribute to the early diagnosis of neurodegenerative diseases, such as Alzheimer’s disease (AD). Early diagnosis includes recognition of pre-demented conditions, such as mild cognitive impairment (MCI) or having a high risk of developing AD. The role of neuroimaging therefore extends beyond its(More)