Learn More
Apoptosis is a highly regulated mechanism by which cells undergo cell death in an active way. As one of the most challenging tasks concerning cancer is to induce apoptosis in malignant cells, researchers increasingly focus on natural products to modulate apoptotic signaling pathways. Curcumin, a natural compound isolated from the plant Curcuma longa, has(More)
Parkinson's disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is rapidly increasing and needs to be efficiently organized, so that the resulting data is available for exploration and analysis. Here we introduce a(More)
The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention in order to prevent or eradicate prostate malignancies. We present here an overview of the chemopreventive potential of curcumin (diferuloylmethane), a well-known natural compound that exhibits therapeutic promise for prostate cancer. In(More)
As cancer is a multifactor disease, it may require treatment with compounds able to target multiple intracellular components. We summarize here how curcumin is able to modulate many components of intracellular signaling pathways implicated in inflammation, cell proliferation and invasion and to induce genetic modulations eventually leading to tumor cell(More)
In this study, we investigated the biological effects of heteronemin, a marine sesterterpene isolated from the sponge Hyrtios sp. on chronic myelogenous leukemia cells. To gain further insight into the molecular mechanisms triggered by this compound, we initially performed DNA microarray profiling and determined which genes respond to heteronemin(More)
Human FOXP3(+)CD25(+)CD4(+) regulatory T cells (Tregs) are essential to the maintenance of immune homeostasis. Several genes are known to be important for murine Tregs, but for human Tregs the genes and underlying molecular networks controlling the suppressor function still largely remain unclear. Here, we describe a strategy to identify the key genes(More)
Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on(More)
A strong relationship exists between inflammation and carcinogenesis. To bring insights into the anti-inflammatory mechanisms by which chemopreventive agents, such as curcumin, are able to counteract the action of inflammation mediators, such as tumor necrosis factor-alpha (TNF-alpha), we compared gene expression profiles in K562 cells treated with(More)
As a histone deacetylase inhibitor, valproic acid (VPA) is a candidate for anticancer therapy. Besides, VPA exhibits various mechanisms of action and its effects on the molecular basis of hematopoiesis remain unclear. To study the effects of VPA on the hematopoietic system, we performed microarray analysis using K562 cells treated with 1mM VPA over a 72h(More)