Learn More
We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing--cancellation of higher order diagrams leading to a finite(More)
We present the results of a phenomenological study of unpolarized nuclear structure functions for a wide kinematical region of x and Q 2. As a basis of our phenomenology we develop a model which takes into account a number of different nuclear effects including nuclear shadowing, Fermi motion and nuclear binding, nuclear pions and off-shell correction to(More)
We have isolated ν(μ) charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a(More)
We report a study of ν(μ) charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section,(More)
We study nuclear effects in the structure function F 3 which describes the parity violating part of the charged-current neuitrino nucleon deep inelastic scattering. Starting from a covariant approach we derive a factorized expression for the nuclear structure function in terms of nuclear spectral function and off-shell nucleon structure functions valid for(More)