Seppo J Vainio

Learn More
The kidney has been widely exploited as a model system for the study of tissue inductions regulating vertebrate organogenesis. Kidney development is initiated by the ingrowth of the Wolfian duct-derived ureteric bud into the presumptive kidney mesenchyme. In response to a signal from the ureter, mesenchymal cells condense, aggregate into pretubular clusters(More)
In the mammalian embryo, both sexes are initially morphologically indistinguishable: specific hormones are required for sex-specific development. Mullerian inhibiting substance and testosterone secreted by the differentiating embryonic testes result in the loss of female (Mullerian) or promotion of male (Wolffian) reproductive duct development,(More)
Growth factor-mediated signaling has been implicated in the regulation of epithelial-mesenchymal interactions during organogenesis. Bone morphogenetic protein 4 (BMP-4), a member of the transforming growth factor beta superfamily, is expressed in the presumptive dental epithelium at the initiation of tooth development. Subsequently, epithelial signaling(More)
Development of the mammalian kidney is initiated by ingrowth of the ureteric bud into the metanephric blastema. In response to signal(s) from the ureter, mesenchymal cells condense, aggregate into pretubular clusters, and undergo epithelialisation to form simple epithelial tubules. Subsequent morphogenesis and differentiation of the tubular epithelium lead(More)
Reciprocal cell-cell interactions between the ureteric epithelium and the metanephric mesenchyme are needed to drive growth and differentiation of the embryonic kidney to completion. Branching morphogenesis of the Wolffian duct derived ureteric bud is integral in the generation of ureteric tips and the elaboration of the collecting duct system. Wnt11, a(More)
Development of the metanephric kidney requires the concerted interaction of two tissues, the epithelium of the ureteric duct and the metanephric mesenchyme. Signals from the ureter induce the metanephric mesenchyme to condense and proliferate around the ureter tip, reciprocal signals from the mesenchyme induce the ureter tip to grow and to branch. Wnt genes(More)
The morphogenesis and cell differentiation in developing teeth is governed by interactions between the oral epithelium and neural crest-derived ectomesenchyme. The fibroblast growth factors FGF-4, -8, and -9 have been implicated as epithelial signals regulating mesenchymal gene expression and cell proliferation during tooth initiation and later during(More)
To bypass the essential gastrulation function of Fgf8 and study its role in lineages of the primitive streak, we have used a new mouse line, T-Cre, to generate mouse embryos with pan-mesodermal loss of Fgf8 expression. Surprisingly, despite previous models in which Fgf8 has been assigned a pivotal role in segmentation/somite differentiation, Fgf8 is not(More)
The kidney is widely used to study the mechanisms of organogenesis. Its development involves fundamental processes, such as epithelial branching, induced morphogenesis and cytodifferentiation, which are common to the development of many other organs. Gene-targeting experiments have greatly improved our understanding of kidney development, and have revealed(More)
Antagonists act to restrict and negatively modulate the activity of secreted signals during progression of embryogenesis. In mouse embryos lacking the extra-cellular BMP antagonist gremlin 1 (Grem1), metanephric development is disrupted at the stage of initiating ureteric bud outgrowth. Treatment of mutant kidney rudiments in culture with recombinant(More)