Learn More
We demonstrate good optical quality TiO(2) thin films grown by atomic layer deposition at 120 degrees C. The optical properties were studied using spectroscopic ellipsometry and prism coupling methods. The refractive index was 2.27, and the slab waveguide propagation loss was less than 1dB/cm at 1.53microm. A high quality resonant waveguide grating was(More)
When silicon strip and slot waveguides are coated with a 50 nm amorphous titanium dioxide (TiO2) film, measured losses at a wavelength of 1.55 μm can be as low as (2 ± 1)dB/cm and (7 ± 2)dB/cm, respectively. We use atomic layer deposition (ALD), estimate the effect of ALD growth on the surface roughness, and discuss the effect on the scattering losses.(More)
We demonstrate guided-mode resonance filters featuring an amorphous TiO(2) layer fabricated by atomic layer deposition on a polymeric substrate. The thermal properties of such filters are studied in detail by taking into account both thermal expansion of the structure and thermo-optic coefficients of the materials. We show both theoretically and(More)
Presbyopia is an age-related loss of accommodation of the human eye that manifests itself as inability to shift focus from distant to near objects. Assuming no refractive error, presbyopes have clear vision of distant objects; they require reading glasses for viewing near objects. Area-divided bifocal lenses are one example of a treatment for this problem.(More)
The existing analyses on extraordinary optical transmission through apertures on a metal screen have been carried out assuming perfect conductivity or by examining arrays of closely spaced holes with subwavelength dimensions. We present an electromagnetic analysis of a single hole (modeled by use of an array of distant holes) in a finitely conducting metal(More)
Optical add-drop multiplexers (OADMs) based on asymmetric Y branches and tilted gratings offer excellent-performance in wavelength-division multiplexed systems. To simplify waveguide fabrication, ion-exchange techniques appear to be an important option in photosensitive glasses. Optimum OADM performance depends on how accurately the waveguide fabrication(More)
Bend loss effects can be a significant concern in the design and performance of diffused, buried waveguide devices. Since diffused, buried waveguides typically do not have analytical mode solutions, the bend mode must be expressed as an expansion of straight waveguide modes. For the case of buried ion-exchanged waveguides, the bend loss is affected by bend(More)
We experimentally demonstrate a novel grating which only produces reflection with mode conversion in a two-mode waveguide. That characteristic can improve the performance of optical devices that currently use tilted Bragg gratings to provide the mode conversion. Tilted Bragg gratings produce also reflections without mode conversion which increases noise and(More)
Michael Gehl,* Ricky Gibson, Joshua Hendrickson, Andrew Homyk, Antti Säynätjoki, Tapani Alasaarela, Lasse Karvonen, Ari Tervonen, Seppo Honkanen, Sander Zandbergen, Benjamin C. Richards, J. D. Olitzky, Axel Scherer, Galina Khitrova, Hyatt M. Gibbs, Ju-Young Kim, and Yong-Hee Lee College of Optical Sciences, University of Arizona, 1630 East University(More)
A highly sensitive technique based on optical absorption using a single-mode, channel integrated optical waveguide is described for broad spectral band detection and analysis of heme-containing protein films at a glass/water interface. Fabrication steps and device characteristics of optical waveguides suitable for operation in the wavelength range of 400 -(More)