Learn More
Aberrant activation of Wnt/␤-catenin signaling and subsequent up-regulation of ␤-catenin response transcription (CRT) is a critical event in the development of human colon cancer. Thus, Wnt/␤-catenin signaling is an attractive target for the development of anticancer therapeutics. In this study, we identified hexachlorophene as an inhibitor of Wnt/␤-catenin(More)
The tumor suppressor, p53, plays an essential role in the cellular response to stress through regulating the expression of genes involved in cell cycle arrest, apoptosis and autophagy. Here, we used a cell-based reporter system for the detection of p53 response transcription to identify the marine sponge metabolites, ilimaquinone and ethylsmenoquinone, as(More)
Activation of the Wnt/β-catenin pathway plays a pathogenic role in age-related macular degeneration (AMD) and is thus a potential target for the development of therapeutics for this disease. Here, we demonstrated that Wnt5a antagonized β-catenin response transcription (CRT) induced with Wnt3a by promoting β-catenin phosphorylation at Ser33/Ser37/Thr41 and(More)
Deregulation of Wnt/β-catenin signaling promotes the development of a broad range of human cancers, including multiple myeloma, and is thus a potential target for the development of therapeutics for this disease. Here, we used a cell-based reporter system to demonstrate that ilimaquinone and ethylsmenoquinone (formerly smenorthoquinone),(More)
Colorectal cancer has emerged as a major cause of death in Western countries. Down-regulation of β-catenin expression has been considered a promising approach for cytotoxic drug formulation. Eight 4,9-friedodrimane-type sesquiterpenoids (1-8) were acquired using the oxidative potential of Verongula rigida on bioactive metabolites from two Smenospongia(More)
  • 1