Learn More
Efflux transporters such as P-glycoprotein (P-gp) and multidrug resistance-associated proteins (Mrps) and their contributions to saquinavir (SQV) brain uptake were characterized. Cerebral flow rate was estimated from diazepam uptake and brain vascular volume was assessed using inulin. Mice brains were perfused with buffer containing SQV alone or coperfused(More)
Bazedoxifene (BZA) acetate, a novel estrogen receptor modulator being developed for the prevention and treatment of postmenopausal osteoporosis, undergoes extensive metabolism in women after oral administration. In this study, the in vitro metabolism of [(14)C]BZA was determined in human hepatocytes and hepatic and intestinal microsomes, and the UDP(More)
AIMS Excessive endothelial globotriaosylceramide (Gb3) accumulation is associated with endothelial dysfunction and impaired endothelium-dependent relaxation in Fabry disease. In endothelial cells, K(Ca)3.1 channels contribute to endothelium-dependent relaxation. However, the effect of Gb3 on K(Ca)3.1 channels and the underlying mechanisms of Gb3-induced(More)
OBJECTIVE Globotriaosylceramide (Gb3) induces KCa3.1 downregulation in Fabry disease (FD). We investigated whether Gb3 induces KCa3.1 endocytosis and degradation. APPROACH AND RESULTS KCa3.1, especially plasma membrane-localized KCa3.1, was downregulated in both Gb3-treated mouse aortic endothelial cells (MAECs) and human umbilical vein endothelial cells.(More)
Fluid and electrolyte homeostasis is a fundamental physiological function required for survival and is associated with a plethora of diseases when aberrant. Systemic fluid and electrolyte composition is regulated by the kidney, and all secretory epithelia generate biological fluids with defined electrolyte composition by vectorial transport of ions and the(More)
The molecular mechanism of biotin brain uptake was investigated using an in vitro bovine blood-brain barrier (BBB) cell model and an in situ mouse brain perfusion technique. A functional uptake/transport correlation of the in vitro and in situ characteristics of biotin uptake was investigated. Morphological and immunochemical characteristics (e.g., factor(More)
We studied the effects of Na+ influx on large-conductance Ca2+-activated K+ (BKCa) channels in cultured human umbilical vein endothelial cells (HUVECs) by means of patch clamp and SBFI microfluorescence measurements. In current-clamped HUVECs, extracellular Na+ replacement by NMDG+ or mannitol hyperpolarized cells. In voltage-clamped HUVECs, changing(More)
BACKGROUND & AIMS The cyclic adenosine monophosphate (cAMP) and Ca(2+) signaling pathways synergize to regulate many physiological functions. However, little is known about the mechanisms by which these pathways interact. We investigated the synergy between these signaling pathways in mouse pancreatic and salivary gland ducts. METHODS We created mice with(More)
The Ca(2+) and cAMP/PKA pathways are the primary signaling systems in secretory epithelia that control virtually all secretory gland functions. Interaction and crosstalk in Ca(2+) and cAMP signaling occur at multiple levels to control and tune the activity of each other. Physiologically, Ca(2+) and cAMP signaling operate at 5-10% of maximal strength, but(More)
A central function of epithelia is the control of the volume and electrolyte composition of bodily fluids through vectorial transport of electrolytes and the obligatory H2O. In exocrine glands, fluid and electrolyte secretion is carried out by both acinar and duct cells, with the portion of fluid secreted by each cell type varying among glands. All acinar(More)