Learn More
Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. Although CFLs and LEDs are more energy-efficient than(More)
Macroalgae, so-called seaweeds, have recently attracted attention as a possible feedstock for biorefinery. Since macroalgae contain various carbohydrates (which are distinctively different from those of terrestrial biomasses), thorough assessments of macroalgae-based refinery are essential to determine whether applying terrestrial-based technologies to(More)
For the last few decades, over 200 papers have been published in the Cr(VI) biosorption research field. Most early studies have claimed that Cr(VI) was removed from aqueous phase through an anionic adsorption, but this approach has been lost old original position. It has been newly explained that these findings were misinterpreted due to errors in measuring(More)
The potential use of the brown seaweed, Ecklonia, biomass as a bioreductant for reducing Cr(VI) was examined in a continuous packed-bed column. The effects of the operating parameters, such as influent Cr(VI) concentration, influent pH, biomass concentration, flow rate and temperature, on the Cr(VI) reduction were investigated. Increases in the influent(More)
The synthesis of distributed wastewater treatment plants (WTPs) has been studied to reduce capital and operating costs associated with wastewater treatment. In this study, the environmental and economic feasibility of a total wastewater treatment network system (TWTNS) including distributed and terminal WTPs was estimated using life cycle assessment (LCA)(More)
Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercury-free. This study aimed to determine if LEDs engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use(More)
Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights(More)
Among useless but abundant agricultural biowastes such as banana skin, green tea waste, oak leaf, walnut shell, peanut shell and rice husk, in this study, banana skin was screened as the most efficient biomaterial to remove toxic Cr(VI) from aqueous solution. X-ray photoelectron spectroscopy (XPS) study revealed that the mechanism of Cr(VI) biosorption by(More)
Display devices such as cathode-ray tube (CRT) televisions and computer monitors are known to contain toxic substances and have consequently been banned from disposal in landfills in the State of California and elsewhere. New types of flat panel display (FPD) devices, millions of which are now purchased each year, also contain toxic substances, but have not(More)
Modern manufacturing of printed wiring boards (PWBs) involves extensive use of various hazardous chemicals in different manufacturing steps such as board preparation, circuit design transfer, etching and plating processes. Two complementary environmental screening methods developed by the U.S. EPA, namely: (i) the Tool for the Reduction and Assessment of(More)