Learn More
Rice architecture is an important agronomic trait and a major limiting factor for its high productivity. Here we describe a novel CCCH-type zinc finger gene, OsLIC (Oraza sativaleaf and tiller angle increased controller), which is involved in the regulation of rice plant architecture. OsLIC encoded an ancestral and unique CCCH type zinc finge protein. It(More)
The conversion of castasterone (CS) to brassinolide (BL), a Baeyer-Villiger oxidation, represents the final and rate-limiting step in the biosynthesis of BL in plants. Heterologously expressed Arabidopsis thaliana CYP85A2 in yeast mediated the conversion of CS to BL as well as the C-6 oxidation of brassinosteroids (BRs). This indicated that CYP85A2 is a(More)
Exogenously applied lysophosphatidylethanolamine (LPE) increased the growth of primary roots and the formation of lateral roots in Arabidopsis thaliana. In the presence of brassinolide, lateral root formation induced by LPE was enhanced, implying that both LPE and brassinosteroids (BR) interact positively in the development of Arabidopsis roots.(More)
MicroRNA (miR)390 cleaves the non-coding TAS3 precursor RNA for the production of tasiRNA-ARF, a group of an endogenous trans-acting small-interfering RNAs which cleave the transcripts of auxin response factor (ARF) 3/4. miR390-cleaved TAS3 RNA is polymerized and diced into tasiRNA-ARF by RNA-dependent RNA polymerase6 (RDR6) and Dicer-like4 (DCL4),(More)
Sunflower hypocotyls elongate as light quality changes from the normal red to far-red (R/FR) ratio of sunlight to a lower R/FR ratio. This low R/FR ratio-induced elongation significantly increases endogenous concentrations of indole-3-acetic acid (IAA) and also of three gibberellins (GAs): GA20, GA1, and GA8. Of these, it is likely GA1 that drives low(More)
The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory(More)
Shoot branching and growth are controlled by phytohormones such as auxin and other components in Arabidopsis. We identified a mutant (igi1) showing decreased height and bunchy branching patterns. The phenotypes reverted to the wild type in response to RNA interference with the IGI1 gene. Histochemical analysis by GUS assay revealed tissue-specific gene(More)
Brassinosteroids (BRs) are plant steroidal hormones that regulate a wide range of developmental processes. Most BR mutants display impaired growth and responses to developmental and environmental stimuli. Here, we found a BR-deficient mutant det2-1 that displayed exceedingly short roots and agravitropic growth, which were not present in other BR mutants. By(More)
In this study, we examined the effects of two phytoplankton species, Chlorella vulgaris and Stephanodiscus hantzschii, on growth of the zooplankton Daphnia magna. Our experimental approach utilized stable isotopes to determine the contribution of food algae to offspring characteristics and to the size of adult D. magna individuals. When equal amounts of(More)
For maintenance of cellular homeostasis, the actions of growth-promoting hormones must be attenuated when nutrient and energy become limiting. The molecular mechanisms that coordinate hormone-dependent growth responses with nutrient availability remain poorly understood in plants [1, 2]. The target of rapamycin (TOR) kinase is an evolutionarily conserved(More)