Learn More
To physically characterize the web of interactions connecting the Saccharomyces cerevisiae proteins suspected to be RNA polymerase II (RNAPII) elongation factors, subunits of Spt4/Spt5 and Spt16/Pob3 (corresponding to human DSIF and FACT), Spt6, TFIIF (Tfg1, -2, and -3), TFIIS, Rtf1, and Elongator (Elp1, -2, -3, -4, -5, and -6) were affinity purified under(More)
The yeast histone deacetylase Rpd3 can be recruited to promoters to repress transcription initiation. Biochemical, genetic, and gene-expression analyses show that Rpd3 exists in two distinct complexes. The smaller complex, Rpd3C(S), shares Sin3 and Ume1 with Rpd3C(L) but contains the unique subunits Rco1 and Eaf3. Rpd3C(S) mutants exhibit phenotypes(More)
We previously reported that apicidin arrested human cancer cell growth through selective induction of p21(WAF1/Cip1). In this study, the apoptotic potential of apicidin and its mechanism in HL60 cells was investigated. Treatment of HL60 cells with apicidin caused a decrease in viable cell number in a dose-dependent manner and an increase in DNA(More)
The largest subunit of RNA polymerase II contains a unique C-terminal domain important for coupling of transcription and mRNA processing. This domain consists of a repeated heptameric sequence (YSPTSPS) phosphorylated at serines 2 and 5. Serine 5 is phosphorylated during initiation and recruits capping enzyme. Serine 2 is phosphorylated during elongation by(More)
Transcription activation has been proposed to require both ubiquitylation and deubiquitylation of histone H2B. Here, we show that Lge1 (Large 1) is found in a complex containing Rad6.Bre1 and that it controls the recruitment of Bre1, a ubiquitin ligase, and Ubp8, a deubiquitylase, to promote ubiquitylation during the early steps in elongation. Chromatin(More)
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular(More)
In budding yeast, there are five JmjC domain-containing proteins, Jhd1, Jhd2, Rph1, Ecm5, and Gis1, which have been suggested to directly remove histone lysine methylation via a hydroxylation reaction. Of these demethylases, the ability of Jhd1 or Rph1 to demethylate histone H3 as a substrate has been identified in vivo. However, the overall roles of(More)
We investigated the effect of rapamycin, a specific inhibitor of the mammalian serine/threonine kinase, mammalian target of rapamycin (mTOR), on the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Pretreatment of cells with rapamycin significantly inhibited LPS-induced nitrite production and the(More)
Epigenetic changes in chromatin state are associated with aging. Notably, two histone modifications have recently been implicated in lifespan regulation, namely acetylation at H4 lysine 16 in yeast and methylation at H3 lysine 4 (H3K4) in nematodes. However, less is known about other histone modifications. Here, we report that cellular aging is associated(More)
Down-regulation of gelsolin expression is associated with cellular transformation and induction of gelsolin exerts antitumorigenic effects. In this study, we show that protein kinase C (PKC) signaling pathway is required for the induction of gelsolin by the histone deacetylase inhibitor apicidin in HeLa cells. Apicidin induces gelsolin mRNA independently of(More)