Learn More
Plastidial phosphorylase (Pho1) accounts for approximately 96% of the total phosphorylase activity in developing rice (Oryza sativa) seeds. From mutant stocks induced by N-methyl-N-nitrosourea treatment, we identified plants with mutations in the Pho1 gene that are deficient in Pho1. Strikingly, the size of mature seeds and the starch content in these(More)
BACKGROUND Endophytic fungi are known plant symbionts. They produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. Coastal dunes are nutrient deficient and offer harsh, saline environment for the existing flora and fauna. Endophytic fungi may play an important role in plant(More)
ADP-glucose pyrophosphorylase (AGP) catalyzes the first committed step of starch biosynthesis in higher plants. To identify AGP isoforms essential for this biosynthetic process in sink and source tissues of rice plants, we analyzed the rice AGP gene family which consists of two genes, OsAGPS1 and OsAGPS2, encoding small subunits (SSU) and four genes,(More)
Previous genetic studies have indicated that the type L alpha-glucan phosphorylase (Pho1) has an essential role during the initiation process of starch biosynthesis during rice seed development. To gain insight into its role in starch metabolism, we characterized the enzymatic properties of the Pho1 recombinant form. Pho1 has significantly higher catalytic(More)
ADP-glucose pyrophosphorylase, a key regulatory enzyme of starch biosynthesis, is composed of a pair of catalytic small subunits (SSs) and a pair of catalytically disabled large subunits (LSs). The N-terminal region of the LS has been known to be essential for the allosteric regulatory properties of the heterotetrameric enzyme. To gain further insight on(More)
The Perilla (Perilla frutescens L. cv. Okdong) oleosin gene, PfOle19, produces a 19-kDa protein that is highly expressed only in seeds. The activity of the -2,015 bp 5'-upstream promoter region of this gene was investigated in transgenic Arabidopsis plants using the fusion reporter constructs of enhanced green fluorescent protein (EGFP) and(More)
Degradation intermediates of the estrogen-regulated apolipoprotein (apo) II mRNA were identified by S1 nuclease mapping and primer extension analysis. S1 mapping of poly(A)-RNA detected a series of mRNAs truncated at specific sites in the 3'-noncoding region. Many of these sites were also detected by primer extension analysis indicating that truncated(More)
Although an alternative pathway has been suggested, the prevailing view is that starch synthesis in cereal endosperm is controlled by the activity of the cytosolic isoform of ADPglucose pyrophosphorylase (AGPase). In rice, the cytosolic AGPase isoform is encoded by the OsAGPS2b and OsAGPL2 genes, which code for the small (S2b) and large (L2) subunits of the(More)
In an attempt to obtain facile methods to purify the heterotetrameric ADP-glucose pyrophosphorylase (AGPase), polyhistidine tags were attached to either the large (LS) or small (SS) subunits of this oligomeric enzyme. The addition of polyhistidine tag to the N-terminus of the LS or SS and co-expression with its unmodified counterpart subunit resulted in(More)
ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed step of starch synthesis in plants. The potato tuber enzyme contains a pair of catalytic small subunits (SSs) and a pair of non-catalytic large subunits (LSs). We have previously identified a LS mutant containing a P52L replacement, which rendered the enzyme with down-regulatory(More)