Seon-Kap Hwang

Learn More
Consistent with its essential role in starch biosynthesis at low temperatures, the plastidial starch phosphorylase from rice endosperm is highly active at low temperature. Moreover, contrary to results on other higher plant phosphorylases, the L80 peptide, a domain unique to plant phosphorylases and not present in orthologous phosphorylases from other(More)
To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4 Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of(More)
  • 1