Learn More
Ever scaling process technology increases variations in transistors. The process variations cause large fluctuations in the access times of SRAM cells. Caches made of those SRAM cells cannot be accessed within the target clock cycle time, which reduces yield of processors. To combat these access time failures in caches, many schemes have been proposed,(More)
Spin-transfer torque random access memory (STT-RAM) has become a promising non-volatile memory technology for cache memories. Recently, 2-bit multi-level cell (MLC) STT-RAM has been proposed to enhance data density, but it suffers from low reliability of its read and write operations. In this paper, we propose a novel cache design called Ternary cache. In(More)
DRAMs are one of the main players of computer system energy consumption due to their large capacities and frequent accesses. Consequently, many schemes have been proposed to reduce DRAM power/energy consumption. Some of them propose new DRAM system and chip organizations, which are effective in reducing power consumption but intrusive. In contrast, we(More)
L2 cache memories are being adopted in the embedded systems for high performance, which, however, increases energy consumption due to their large sizes. We propose a low-energy low-area L2 cache architecture, which performs as well as the conventional L2 cache architecture with 53% less area and around 40% less energy consumption. This architecture consists(More)
Recent interest in CMOS voltage scaling has produced a class of cache architectures which tolerate parametric SRAM failures at low voltage by substituting faulty words of one cache line with healthy words of another line. These caches rely on the fault maps (which grow reciprocally with smaller word sizes) for fault identification. Therefore, the benefits(More)
Future microprocessors are expected to observe higher transient error rates in combinational logic due to technology scaling and dense integration. We propose a simple transient error protection mechanism for embedded systems exploiting frequent small operand values of instructions and frequently used shift operations. The conditions for applicable(More)
Digital circuits are expected to increasingly suffer from more hard faults due to technology scaling. Especially, a single hard fault in the ALU might lead to a total failure in the embedded systems. In addition, energy efficiency is critical in these systems. To address these increasingly important problems in the ALU, we propose a novel energy-efficient(More)