Seok-Yong Lee

Learn More
Voltage-dependent ion channels gate open in response to changes in cell membrane voltage. This form of gating permits the propagation of action potentials. We present two structures of the voltage-dependent K(+) channel KvAP, in complex with monoclonal Fv fragments (3.9 A) and without antibody fragments (8 A). We also studied KvAP with disulfide(More)
Voltage-dependent K(+) (Kv) channels gate open in response to the membrane voltage. To further our understanding of how cell membrane voltage regulates the opening of a Kv channel, we have studied the protein interfaces that attach the voltage-sensor domains to the pore. In the crystal structure, three physical interfaces exist. Only two of these consist of(More)
Venomous animals produce small protein toxins that inhibit ion channels with high affinity. In several well-studied cases the inhibitory proteins are water-soluble and bind at a channel's aqueous-exposed extracellular surface. Here we show that a voltage-sensor toxin (VSTX1) from the Chilean Rose Tarantula (Grammostola spatulata) reaches its target by(More)
In voltage-gated Na(+), K(+), and Ca(2+) channels, four voltage-sensor domains operate on a central pore domain in response to membrane voltage. In contrast, the voltage-gated proton channel (Hv) contains only a voltage-sensor domain, lacking a separate pore domain. The subunit stoichiometry and organization of Hv has been unknown. Here, we show that human(More)
The chemotactic regulator CheY controls the direction of flagellar rotation in Escherichia coli. We have determined the crystal structure of BeF3−-activated CheY from E. coli in complex with an N-terminal peptide derived from its target, FliM. The structure reveals that the first seven residues of the peptide pack against the β4-H4 loop and helix H4 of CheY(More)
MraY (phospho-MurNAc-pentapeptide translocase) is an integral membrane enzyme that catalyzes an essential step of bacterial cell wall biosynthesis: the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl phosphate. MraY has long been considered a promising target for the development of antibiotics, but the(More)
Voltage-gated Na⁺ (Na(V)) channels initiate neuronal action potentials. Na(V) channels are composed of a transmembrane domain responsible for voltage-dependent Na⁺ conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs)(More)
The present study was undertaken to investigate the hypothesis that the mu-opioid receptors play a crucial role in locomotor activity and sensitization to cocaine and morphine in wild-type and mu-opioid receptor knockout mice. Our results show that morphine and cocaine increased locomotor activity in wild-type mice, but failed to increase locomotor activity(More)
AIMS To determine the frequencies of the variant alleles and the genotypes of CYP2C9 in a Korean population. METHODS Three hundred and fifty-eight healthy Korean subjects were studied. CYP2C9 alleles were detected by polymerase chain reaction-restriction fragment length polymorphism assays and direct sequencing assays. RESULTS The allele frequencies(More)
Sulfuretin, a potent anti-oxidant, has been thought to provide health benefits by decreasing the risk of oxidative stress-related diseases. In this study, we investigated the mechanisms of sulfuretin protection of neuronal cells from cell death induced by the Parkinson's disease (PD)-related neurotoxin 6-hydroxydopamine (6-OHDA). We examined whether(More)