Seok-Myung Lee

Learn More
In this study, we demonstrate that sigma(E), an alternative sigma factor of Corynebacterium glutamicum, is involved in cell surface stresses. Cells in which the sigE gene was deleted evidenced increased sensitivity to magnesium deficiency, as well as to SDS, lysozymes, EDTA and heat. We utilized physiological analyses to show that the downstream gene,(More)
Three csp-like genes were identified in the Corynebacterium glutamicum genome and designated cspA, cspB, and cspA2. The genes cspA and cspA2 encode proteins, comprising of 67 amino acid residues, respectively. They share 83% identity with each other. Identity of those proteins with Escherichia coli Csp proteins was near 50%. The cspB gene encodes a protein(More)
RamA plays a regulatory role for acetate utilization and S-layer biosynthesis in Corynebacterium glutamicum. Looking for any additional role, the function of RamA was analyzed in Corynebacterium ammoniagenes, which is closely related to C. glutamicum. In this study, we showed that the ΔramA mutant constructed by a markerless knockout strategy possessed(More)
In this study, we analyzed the whcA gene from Corynebacterium glutamicum, which codes for a homologue of the WhiB-family of proteins. Deletion of the gene did not affect the growth of the mutant cells, indicating that the whcA gene was not essential under ordinary growth conditions. However, cells overexpressing the protein not only showed retarded growth(More)
A novel regulatory gene, which performs an essential function in sulfur metabolism, has been identified in Corynebacterium ammoniagenes and was designated cmaR (cysteine and methionine regulator in C. ammoniagenes). The cmaR-disrupted strain (DeltacmaR) lost the ability to grow on minimal medium, and was identified as a methionine and cysteine double(More)
  • 1