Learn More
Hyperekplexia is a rare, but potentially fatal, neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden, unexpected auditory or tactile stimuli. This disorder is primarily caused by inherited mutations in the genes encoding the glycine receptor (GlyR) alpha1 subunit (GLRA1) and the presynaptic glycine(More)
Polymicrogyria and lissencephaly are causally heterogeneous disorders of cortical brain development, with distinct neuropathological and neuroimaging patterns. They can be associated with additional structural cerebral anomalies, and recurrent phenotypic patterns have led to identification of recognizable syndromes. The lissencephalies are usually(More)
Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic(More)
Glycinergic neurotransmission is a major inhibitory influence in the CNS and its disruption triggers a paediatric and adult startle disorder, hyperekplexia. The postsynaptic α(1)-subunit (GLRA1) of the inhibitory glycine receptor (GlyR) and the cognate presynaptic glycine transporter (SLC6A5/GlyT2) are well-established genes of effect in hyperekplexia.(More)
BACKGROUND Genetic testing in long QT syndrome (LQTS) is moving from research into clinical practice. We have recently piloted a molecular genetics program in a New Zealand research laboratory with a view to establishing a clinical diagnostic service. OBJECTIVE This study sought to report the spectrum of LQTS and Brugada mutations identified by a pilot(More)
Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage to hyperekplexia. Most hyperekplexia cases are caused by mutations in(More)
Mutations in alpha- and beta-tubulins are increasingly recognized as a major cause of malformations of cortical development (MCD), typically lissencephaly, pachygyria and polymicrogyria; however, sequencing tubulin genes in large cohorts of MCD patients has detected tubulin mutations in only 1-13%. We identified patients with a highly characteristic(More)
Gene discovery has been one of the most important advances in our understanding of human disorders. Early linkage and positional cloning strategies have now given way to next generation sequencing (NGS) with age-old help from biostatistical and bioinformatical input. In this chapter, we present the importance of getting the basics right, namely, how the(More)
Startle disease is a rare, potentially fatal neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden unexpected auditory, visual or tactile stimuli. Mutations in the GlyR α(1) subunit gene (GLRA1) are the major cause of this disorder, since remarkably few individuals with mutations in the GlyR β subunit gene(More)
BACKGROUND Inherited long-QT syndrome is characterized by prolonged QT interval on the ECG, syncope, and sudden death caused by ventricular arrhythmia. Causative mutations occur mostly in cardiac potassium and sodium channel subunit genes. Confidence in mutation pathogenicity is usually reached through family genotype-phenotype tracking, control population(More)