Senya Matsufuji

Learn More
Rat antizyme gene expression requires programmed, ribosomal frameshifting. A novel autoregulatory mechanism enables modulation of frameshifting according to the cellular concentration of polyamines. Antizyme binds to, and destabilizes, ornithine decarboxylase, a key enzyme in polyamine synthesis. Rapid degradation ensues, thus completing a regulatory(More)
Polyamines are required for entry and progression of the cell cycle. As such, augmentation of polyamine levels is essential for cellular transformation. Polyamines are autoregulated through induction of antizyme, which represses both the rate-limiting polyamine biosynthetic enzyme ornithine decarboxylase and cellular polyamine transport. In the present(More)
Antizyme plays an important regulatory role in the synthesis of ornithine decarboxylase (ODC), a key enzyme of polyamine synthesis in higher animals. As well as inactivating polyamine uptake, antizyme is induced by polyamine-enhanced translational frameshifting, and binds to ODC, accelerating its ATP-dependent degradation, a process catalysed by the 26S(More)
Ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is the most rapidly turned over mammalian enzyme. We have shown that its degradation is accelerated by ODC antizyme, an inhibitory protein induced by polyamines. This is a new type of enzyme regulation and may be a model for selective protein degradation. Here we report the(More)
The selenocysteine (Sec) tRNA[Ser]Sec population in higher vertebrates consists of two major isoacceptors that differ from each other by a single nucleoside modification in the wobble position of the anticodon (position 34). One isoacceptor contains 5-methylcarboxymethyluridine (mcmU) in this position, whereas the other contains(More)
Ornithine decarboxylase (ODC) is a key enzyme in polyamine biosynthesis. Turnover of ODC is extremely rapid and highly regulated, and is accelerated when polyamine levels increase. Polyamine-stimulated ODC degradation is mediated by association with antizyme (AZ), an ODC inhibitory protein induced by polyamines. ODC, in association with AZ, is degraded by(More)
Antizyme inhibitor was highly purified from rat liver by using affinity chromatography. It has some structural resemblance to ornithine decarboxylase (ODC), as judged from Mr, immunoreactivity and reversible binding with antizyme. However, unlike hepatic amounts of ODC and ODC-antizyme complex, that of antizyme inhibitor did not show much fluctuation upon(More)
The degradation of ornithine decarboxylase (ODC) catalyzed by the 26 S proteasome is accelerated by antizyme, an ODC inhibitory protein induced by polyamines. Previously, we have found another possible regulatory protein of ODC degradation, antizyme inhibitor. Antizyme inhibitor binds to the antizyme with a higher affinity than that of ODC, releasing ODC(More)
Regulation of ornithine decarboxylase in vertebrates involves a negative feedback mechanism requiring the protein antizyme. Here we show that a similar mechanism exists in the fission yeast Schizosaccharomyces pombe. The expression of mammalian antizyme genes requires a specific +1 translational frameshift. The efficiency of the frameshift event reflects(More)
Prion proteins are found in mammals and yeast, and can transmit diseases and encode heritable phenotypic traits. In Saccharomyces cerevisiae, eRF3, Rnq1, Ure2 and Swil are functional proteins with a soluble conformation that can switch to a non-functional, amyloid conformation denoted as [PSI+], [PIN+], [URE3] and [SWI+], respectively. The prion [PSI+](More)