Senthold Asseng

Learn More
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the(More)
Root growth and soil water content were measured in a field experiment with wheat subjected to two periods of water deficit. The first period was induced early in the season between the early vegetative stage (22 DAS) and late terminal spikelet (50 DAS), the second period at mid-season between terminal spikelet (42 DAS) and anthesis (74 DAS). Total root(More)
The simulation of crop - soil systems with a model requires an appropriate description of the root dynamics. An empirical root growth model that simulates root-shoot relations, root distribution and a dynamic response to environmental conditions is presented. The root model extends an existing crop model and links it to a soil model to calculate dry matter(More)
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., de Sanctis, G., Doltra, J., Fereres, E., Gayler, S., Hoogenboom, D., Hunt, L. A., Izaurralde, R.(More)
Water-use efficiency (WUE [g grain yield m−2 mm−1 ET]) and nitrogen-use efficiency (NUE [Δ g grain yield g−1 Napplied]) are important measures that can affect the productivity of crops in different environmental systems. However, measurement and interpretation of WUE and NUE in the field are often hampered by the high degree of complexity of these systems(More)
Humanity is heading toward the major challenge of having to increase food production by about 50% by 2050 to cater for an additional three billion inhabitants, in a context of arable land shrinking and degradation, nutrient deficiencies, increased water scarcity, and uncertainty due to predicted climatic changes. Already today, water scarcity is probably(More)
Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of(More)
APSIM Nwheat is a crop system simulation model, consisting of modules that incorporate aspects of soil water, nitrogen (N), crop residues, and crop growth and development. The model was applied to simulate aboveand belowground growth, grain yield, water and N uptake, and soil water and soil N of wheat crops in the Netherlands. Model outputs were compared(More)
Subsoil constraints to root growth exacerbate frequent water and nutrient limitations to crop yields in Mediterranean-type environments. Amelioration of subsoil constraints can relieve these limitations by opening root-access to subsoil water and nutrients. However, decisions in subsoil amelioration are hampered by seasonally variable yield responses in(More)
Subsurface soil acidity reduces the growth of roots, which can potentially decrease crop yields. However, the magnitude of these yield reductions is dependent on interactions between factors such as the depth and severity of subsurface soil acidity, plant resistance to acidity, and water and nutrient availability. The Agricultural Production Systems(More)