Senlin Zhang

Learn More
This brief studies exponential H<sub>&#x221E;</sub> synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H<sub>&#x221E;</sub> control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee(More)
This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential(More)
The energy reduction is a challenging problem in the applications of underwater wireless sensor networks (UWSNs). The embedded battery is difficult to be replaced and it has an upper bound on its lifetime. Multihop relay is a popular method to reduce energy consumption in data transmission. The energy minimum path from source to destination in the sensor(More)
In this paper, H∞ synchronization and state estimation problems are considered for different types of chaotic systems. A unified model consisting of a linear dynamic system and a bounded static nonlinear operator is employed to describe these chaotic systems, such as Hopfield neural networks, cellular neural networks, Chua's circuits, unified chaotic(More)
With the advance of semiconductor, multi-core architecture is inevitable in today's embedded system design. Nested loops are usually the most critical part in multimedia and high performance DSP (Digital Signal Processing) systems. Hence, maximizing loop parallelism is an important issue to improve the performance of a modern compiler. This paper studies(More)
A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control(More)
This paper is concerned with the problem of state estimation for a class of discrete-time chaotic systems with or without time delays. A unified model consisting of a linear dynamic system and a bounded static nonlinear operator is employed to describe these systems, such as chaotic neural networks, Chua's circuits, Hénon map, etc. Based on the H∞(More)
This paper presents an exponential synchronization scheme between two chaotic systems with different structures and parameters. A unified model consisting of a linear dynamic system and a bounded static nonlinear operator is employed to describe these totally different chaotic systems. A novel state feedback control law is established to exponentially(More)
The concept of parity-time symmetry (PT symmetry) originates from the canonical quantum mechanics and has become a hot topic recently. As a versatile platform to investigate the intriguing concept, both theoretical and experimental works in optics have been implemented. In this paper, the PT symmetry breaking phenomenon is investigated in a coupled nanobeam(More)