Senlin Zhang

Learn More
This paper is concerned with the problem of state estimation for a class of discrete-time chaotic systems with or without time delays. A unified model consisting of a linear dynamic system and a bounded static nonlinear operator is employed to describe these systems, such as chaotic neural networks, Chua's circuits, Hénon map, etc. Based on the H∞(More)
This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential(More)
— With the advance of semiconductor, multi-core architecture is inevitable in today's embedded system design. Nested loops are usually the most critical part in multimedia and high performance DSP (Digital Signal Processing) systems. Hence, maximizing loop parallelism is an important issue to improve the performance of a modern compiler. This paper studies(More)
This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference(More)
Notch-1 promotes invasion and metastasis of cancer cells but its role in salivary adenoid cystic carcinoma (SACC) remains unelucidated. Here, we sought to investigate the effect of Notch-1 knockdown on the invasion and metastasis of SACC cells. Stable ACC-M cells whose Notch-1 was silenced by lentiviral vectors were established. Cellular proliferation was(More)
Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and(More)