Learn More
We study the problem of group recommendation. Recommendation is an important information exploration paradigm that retrieves interesting items for users based on their profiles and past activities. Single user recommendation has received significant attention in the past due to its extensive use in Amazon and Netflix. How to recommend to a group of users(More)
Nowadays, online shopping has become a daily activity. Web users purchase a variety of items ranging from books to electronics. The large supply of online products calls for sophisticated techniques to help users explore available items. We propose to build <i>composite items</i> which associate a <i>central item</i> with <i>a set of packages</i>, formed by(More)
This paper proposes Facetedpedia, a faceted retrieval system for information discovery and exploration in Wikipedia. Given the set of Wikipedia articles resulting from a keyword query, Facetedpedia generates a faceted interface for navigating the result articles. Compared with other faceted retrieval systems, Facetedpedia is fully automatic and dynamic in(More)
KDD Cup 2013 challenged participants to tackle the problem of author name ambiguity in a digital library of scientific publications. The competition consisted of two tracks, which were based on large-scale datasets from a snapshot of Microsoft Academic Search, taken in January 2013 and including 250K authors and 2.5M papers. Participants were asked to(More)
Developing holistic predictive modeling solutions for risk prediction is extremely challenging in healthcare informatics. Risk prediction involves integration of clinical factors with socio-demographic factors, health conditions, disease parameters, hospital care quality parameters, and a variety of variables specific to each health care provider making the(More)
We examine the problem of recommending items to ad-hoc user groups. Group recommendation in collaborative rating datasets has received increased attention recently and has raised novel challenges. Different consensus functions that aggregate the ratings of group members with varying semantics ranging from least misery to pairwise disagreement, have been(More)
In this paper, we propose minimum-effort driven navigational techniques for enterprise database systems based on the faceted search paradigm. Our proposed techniques dynamically suggest facets for drilling down into the database such that the cost of navigation is minimized. At every step, the system asks the user a question or a set of questions on(More)
Planning an itinerary when traveling to a city involves substantial effort in choosing Points-of-Interest (POIs), deciding in which order to visit them, and accounting for the time it takes to visit each POI and transit between them. Several online services address different aspects of itinerary planning but none of them provides an interactive interface(More)
We propose a principled optimization-based interactive query relaxation framework for queries that return no answers. Given an initial query that returns an empty answer set, our framework dynamically computes and suggests alternative queries with less conditions than those the user has initially requested, in order to help the user arrive at a query with a(More)