Learn More
Glutamatergic and GABAergic neurons mediate much of the excitatory and inhibitory neurotransmission, respectively, in the vertebrate nervous system. The process by which developing neurons select between these two cell fates is poorly understood. Here we show that the homeobox genes Tlx3 and Tlx1 determine excitatory over inhibitory cell fates in the mouse(More)
Most neurons in vertebrates make a developmental choice between two principal neurotransmitter phenotypes (glutamatergic versus GABAergic). Here we show that the homeobox gene Lbx1 determines a GABAergic cell fate in the dorsal spinal cord at early embryonic stages. In Lbx1-/- mice, the presumptive GABAergic neurons are transformed into glutamatergic cells.(More)
Brainstem visceral sensory and (nor)adrenergic neurons play crucial roles in modulating cardiovascular and respiratory functions. The origins and formation of these neurons are poorly understood. Here we show that these two classes of neurons are derived from Mash1-positive precursor cells, and can be prospectively identified by combinatorial expression of(More)
Trigeminal nuclei and the dorsal spinal cord are first-order relay stations for processing somatic sensory information such as touch, pain, and temperature. The origins and development of these neurons are poorly understood. Here we show that relay somatic sensory neurons and D2/D4 dorsal interneurons likely derive from Mash1-positive neural precursors, and(More)
The isolated homeobox gene Enx (Hox11L1) is expressed in enteric neurons innervating distal ileum, and proximal and distal colon. Enx-deficient mice develop megacolon with massive distension of the proximal colon. The number of myenteric ganglia, total neurons per ganglion, and NADPH diaphorase presumptive inhibitory neurons per ganglion are increased in(More)
Mdm2 acts as a major regulator of the tumor suppressor p53 by targeting its destruction. Here, we show that the mdm2 gene is also regulated by the Ras-driven Raf/MEK/MAP kinase pathway, in a p53-independent manner. Mdm2 induced by activated Raf degrades p53 in the absence of the Mdm2 inhibitor p19ARF. This regulatory pathway accounts for the observation(More)
BACKGROUND Parkinson's disease (PD) is characterized by alterations in dopaminergic neurotransmission. Genetic polymorphisms involved in dopaminergic neurotransmission may influence susceptibility to PD. METHODS We investigated the relationship of catechol-O-methyltransferase (COMT), monoamine oxidase B (MAOB), dopamine receptor (DR) D2 and DRD4(More)
BACKGROUND Colorectal cancer is a common disease that involves genetic alterations, such as inactivation of tumour suppressor genes and activation of oncogenes. Among them are RAS and BRAF mutations, which rarely coexist in the same tumour. Individual members of the Rho (Ras homology) GTPases contribute with distinct roles in tumour cell morphology,(More)
RAS oncogenes are thought to play a role at multiple stages of tumorigenesis. The role and mechanisms by which RAS oncogenes maintain the transformed state of human cancer cells are poorly understood. Here, we have studied the role of oncogenic K-RAS in maintaining cytoskeletal disruption, cell adhesion and motility in metastatic colon carcinoma cells.(More)
Our previous studies using microsatellite markers near or in the TSH receptor (TSHR) gene revealed significant association between autoimmune thyroid disease (AITD) in Japanese patients and TSHR microsatellite alleles. In the present study, we performed a case-control analysis of AITD using single-nucleotide polymorphisms (SNPs) spaced 3-50 kb apart(More)