Seloua El Ouezzani

Learn More
The neuroendocrine protein secretogranin II is the precursor of several neuropeptides, including secretoneurin and a novel 66-amino acid peptide, EM66, the sequence of which has been highly conserved across the vertebrae phylum. The presence of EM66 has been detected in the adult and fetal human adrenal gland, as well as the rat pituitary and adrenal(More)
Using in situ hybridization, the mRNA levels encoding neuropeptide Y (NPY) was investigated in the arcuate nucleus (ARC) of jerboas under three different states of energy balance. (1) normally feeding animals, (2) hibernating animals and finally (3) animals food deprived for 5 days. The hibernating and food deprived jerboas exhibited a significant increase(More)
EM66 is a 66-amino acid peptide derived from secretogranin II, a member of granin acidic secretory protein family, by proteolytic processing. EM66 has been previously characterized in the jerboa (Jaculus orientalis) hypothalamus and its potential implication in the neuroendocrine regulation of feeding behaviour has been demonstrated. In the present study,(More)
The presence of mycotoxins in food is a major problem of public health as they produce immunosuppressive, hepatotoxic and neurotoxic effects. Mycotoxins also induce mutagenic and carcinogenic effects after long exposure. Among mycotoxins that contaminate food are aflatoxins (AF) such as AFB1, which is the most powerful natural carcinogen. The AF poisoning(More)
OBJECTIVES AND METHODS Neuropeptides, as the main neuroendocrine system effectors, regulate notably the response to different stressors via a secretory plasticity within their respective hypothalamic neuronal populations. The aim of the present study was to explore by immunocytochemistry the occurrence and the potential expression plasticity of the novel(More)
OBJECTIVES AND METHODS The presence of oxytocin (OT) and its putative participation to the phenotypic plasticity of CRH neurones in the stressed jerboa was investigated. We analysed by immunocytochemistry the OT expression within the hypothalamic parvicellular paraventricular nucleus (pPVN) of male jerboas submitted to an acute immobilization (30 min). (More)
The corticotropin-releasing hormone (CRH) neurons of the hypothalamic parvocellular paraventricular nucleus (PVN) have a high potential for phenotypical plasticity, allowing them to rapidly modify their neuroendocrine output, depending upon the type of stressors. Indeed, these neurons coexpress other neuropeptides, such as cholecystokinin (CCK), vasopressin(More)
The hypothalamic response to an environmental stress implicates the corticotrophin-releasing hormone (CRH) neuroendocrine system of the hypothalamic parvicellular paraventricular nucleus (PVN) in addition to other neuropeptides coexpressed within CRH neurones and controlling the hypothalamo-pituitary-adrenal (HPA) axis activity as well. Such neuropeptides(More)
The jerboa is a semi-desert rodent, in which reproductive activity depends on the seasons, being sexually active in the spring-summer. The present study aimed to determine whether the expression of two RF-amide peptides recently described to regulate gonadotrophin-releasing hormone neurone activity, kisspeptin (Kp) and RF-amide-related peptide (RFRP)-3,(More)
The distribution of cells expressing gonadotropin-releasing hormone (GnRH) immunoreactivity was examined in the brain of adult jerboa during two distinct periods of the reproductive cycle. During spring-summer, when the jerboa is sexually active, a high density of cell bodies and fibres immunoreactive (IR) for GnRH was observed at the level of separation of(More)