Selim Ozel

  • Citations Per Year
Learn More
Soft robotics carries the promise of making robots as capable and adaptable as biological creatures, but this will not be possible without the ability to perform self-sensing and control with precision and repeatability. In this paper, we seek to address this need with the development of a new pneumatically-actuated soft bending actuation module with(More)
Soft pneumatic actuators provide many exciting properties, but controlling them without the use of bulky and expensive flow-control valves can be difficult and computationally expensive. We seek a solution to this problem by introducing an inexpensive and reliable muscle-like linear soft actuator used antagonistically to operate a rigid 1-DoF joint,(More)
This paper addresses the design and dynamic analysis of a new generation of fluidic elastomer actuators (FEAs) that offer bidirectional bending developed as motion segments of a pressure-operated soft robotic snake. Our prior work on FEAs has identified a number of limitations, namely a high center of gravity, narrow base, slow dynamics, and a small range(More)
Soft robotic snakes promise significant advantages in achieving traveling curvature waves with a reduced number of active segments as well as allowing for safe and adaptive interaction with the environment and human users. However, current soft robot platforms suffer from a lack of accurate theoretical dynamic models and proprioceptive measurements, which(More)
As an emerging field, soft-bodied robots require profoundly different approaches to sensing and actuation compared to their rigid-bodied counterparts. Electro-mechanical design, fabrication, and operational challenges due to material elasticity significantly complicate embedded, modular and precise proprioceptive feedback. This work presents a novel(More)
Real-world environments are complex, unstructured, and often fragile. Soft robotics offers a solution for robots to safely interact with the environment and human coworkers, but suffers from a host of challenges in sensing and control of continuously deformable bodies. To overcome these challenges, this article considers a modular soft robotic architecture(More)
Manual palpation is commonly used to localize tumors and other features buried deep inside organs during open surgery. This approach is not feasible in minimally invasive or robotic surgery, as the contact with the tissue is mediated by instruments. To address this problem, we propose a soft robotic skin (SRS) that can be deployed from a small incision and(More)
Arm swing action is a natural phenomenon that emerges in biped locomotion. A shoulder torque reference generation method is introduced in this paper to utilize arms of a humanoid robot during locomotion. Main idea of the technique is the employment of shoulder joint actuation torques in order to stabilize body orientation. The reference torques are computed(More)
Legged robots have significant advantages over other types of mobile robots when task at hand requires the robot to overcome obstacles. This paper presents a reference trajectory generation method for a quadruped robot for pace gait on a flat surface. The approach is based on the Zero Moment Point (ZMP) stability criterion and the Linear Inverted Pendulum(More)
  • 1