Selim Ozel

Learn More
— This paper addresses the design and dynamic analysis of a new generation of fluidic elastomer actuators (FEAs) that offer bidirectional bending developed as motion segments of a pressure-operated soft robotic snake. Our prior work on FEAs has identified a number of limitations, namely a high center of gravity, narrow base, slow dynamics, and a small range(More)
— Soft pneumatic actuators provide many exciting properties, but controlling them without the use of bulky and expensive flow-control valves can be difficult and computa-tionally expensive. We seek a solution to this problem by introducing an inexpensive and reliable muscle-like linear soft actuator used antagonistically to operate a rigid 1-DoF joint,(More)
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may(More)
Soft robotic snakes promise significant advantages in achieving traveling curvature waves with a reduced number of active segments as well as allowing for safe and adaptive interaction with the environment and human users. However, current soft robot platforms suffer from a lack of accurate theoretical dynamic models and proprioceptive measurements, which(More)
— Legged robots have significant advantages over other types of mobile robots when task at hand requires the robot to overcome obstacles. This paper presents a reference trajectory generation method for a quadruped robot for pace gait on a flat surface. The approach is based on the Zero Moment Point (ZMP) stability criterion and the Linear Inverted Pendulum(More)
  • 1