Selene Baschieri

Learn More
In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this(More)
Plant viruses can be genetically modified to produce chimeric virus particles (CVPs) carrying heterologous peptides. The efficacy of plant-produced CVPs in inducing antibody responses specific to the displayed peptide has been extensively demonstrated. To determine if plants can be used to produce CVPs able to activate peptide-specific major(More)
The use of biological self-assembling materials, plant virus nanoparticles in particular, appears very intriguing as it allows a great choice of symmetries and dimensions, easy chemical and biological engineering of both surface and/or internal cavity as well as safe and rapid production in plants. In this perspective, we present an initial evaluation of(More)
The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we(More)
The potexvirus Potato virus X (PVX) can be modified genetically to generate chimeric virus particles (CVPs) carrying heterologous peptides fused to coat protein (CP) subunits. A spontaneous PVX mutant expressing a truncated, but functional, form of the CP has been isolated. With the aim of exploiting this virus to display peptides useful for vaccine(More)
Potato virus X coat protein is necessary for both cell-to-cell and phloem transfer, but it has not been clarified definitively whether it is needed in both movement phases solely as a component of the assembled particles or also of differently structured ribonucleoprotein complexes. To clarify this issue, we studied the infection progression of a mutant(More)
BACKGROUND Plants may represent excellent alternatives to classical heterologous protein expression systems, especially for the production of biopharmaceuticals and vaccine components. Modern vaccines are becoming increasingly complex, with the incorporation of multiple antigens. Approaches towards developing an HIV vaccine appear to confirm this, with a(More)
Heat-shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen-presenting cells (APC), including dendritic cells (DC). Targeting is achieved through binding of hsp to distinct cell surface receptors and is followed by(More)
In recent years there has been an outburst of interest regarding the employment of nanoparticles for biomedical applications. Among the different types, such as metallic, organic, biological and hybrid systems, virus based nanoparticles have become a popular field of research. Viruses are able to form organized structures by molecular self assembly of(More)
Oil bodies (OBs) are plant cell organelles that consist of a lipid core surrounded by a phospholipid monolayer embedded with specialized proteins such as oleosins. Recombinant proteins expressed in plants can be targeted to OBs as fusions with oleosin. This expression strategy is attractive because OBs are easily enriched and purified from other cellular(More)