Learn More
The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is(More)
We present a high-spectral-resolution and experimentally simple version of spectral interferometry using optical fibers and crossed beams, which we call SEA TADPOLE. Rather than using collinear unknown and reference pulses separated in time to yield spectral fringes-and reduced spectral resolution-as in current versions, we use time-coincident pulses(More)
We show that the spatio-temporal distortion, pulse-front tilt, is naturally, easily, and sensitively measured by the recently demonstrated, extremely simple variation of single-shot second-harmonic generation frequency-resolved optical gating (SHG FROG): GRENOUILLE. While GRENOUILLE traces are ordinarily centered on the zero of delay, a pulse with(More)
We show that the spatio-temporal distortion, spatial chirp, is naturally and easily measured by single-shot versions of second-harmonic generation frequency-resolved optical gating (SHG FROG) (including the extremely simple version, GRENOUILLE);. While SHG FROG traces are ordinarily symmetrical, a pulse with spatial chirp yields a trace with a shear that is(More)
Pulse-front tilt in an ultrashort laser pulse is generally considered to be a direct consequence of, and equivalent to, angular dispersion. We show, however, that, while this is true for certain types of pulse fields, simultaneous temporal chirp and spatial chirp also yield pulse-front tilt, even in the absence of angular dispersion. We verify this effect(More)
We have designed and demonstrated a very simple and compact ultrashort-pulse compressor using a single prism and a corner-cube. Our design is significantly easier to align and tune compared with previous designs. Angle-tuning the prism wavelength-tunes, and translating the corner cube varies the group-delay dispersion over a wide range. When tuned, the(More)
We present a rigorous, but mathematically relatively simple and elegant, theory of first-order spatio-temporal distortions, that is, couplings between spatial (or spatial-frequency) and temporal (or frequency) coordinates, of Gaussian pulses and beams. These distortions include pulse-front tilt, spatial dispersion, angular dispersion, and a less well-known(More)
A transition–Cherenkov electromagnetic emission by a femtosecond laser pulse propagating in a self-induced plasma channel in air has been very recently proposed as mechanism for production of terahertz (THz) radiation in the forward direction. In this paper, we study in detail the theory of the transition–Cherenkov process. The theoretical model is(More)
We develop a first-order description of spatio-temporal distortions in ultrashort pulses using normalized parameters that allow for a direct assessment of their severity, and we give intuitive pictures of pulses with different amounts of the various distortions. Also, we provide an experimental example of the use of these parameters in the case of spatial(More)