Selami Beyhan

Learn More
— In this paper, we compare indirect adaptive fuzzy control and sliding-mode control in a robot manipulator application. The manipulator performs pick-and-place tasks with unknown and variable payloads. The change of payload causes large variations in the dynamics of the robot. The sliding-mode controller deals with the payload change through its inherent(More)
This paper presents a new orthogonal neural network (ONN) which is utilized successively for online identification and control of nonlinear discrete-time systems. The proposed network is designed with auto regressive with exogenous (ARX) terms of inputs and outputs, and their orthogonal terms by Chebyshev polynomials. The network is a single layer neural(More)
In this paper, a novel radial basis function (RBF) neural network is proposed and applied successively for online stable identification and control of nonlinear discrete-time systems. The proposed RBF network is a one hidden layer neural network (NN) with its all parameters being adaptable. The RBF network parameters are optimized by gradient descent method(More)
  • 1