Learn More
Traffic congestion, volumes, origins, destinations, routes, and other road-network performance metrics are typically collected through survey data or via static sensors such as traffic cameras and loop detectors. This information is often out-of-date, difficult to collect and aggregate, difficult to analyze and quantify, or all of the above. In this paper(More)
— In this paper, we present a congestion-aware route planning system. First we learn the congestion model based on real data from a fleet of taxis and loop detectors. Using the learned street-level congestion model, we develop a congestion-aware traffic planning system that operates in one of two modes: (1) to achieve the social optimum with respect to(More)
This paper presents a stochastic motion planning algorithm and its application to traffic navigation. The algorithm copes with the uncertainty of road traffic conditions by stochastic modeling of travel delay on road networks. The algorithm determines paths between two points that optimize a cost function of the delay probability distribution. It can be(More)
—We describe an algorithm for stochastic path planning and applications to route planning in the presence of traffic delays. We improve on the prior state of the art by designing, analyzing, implementing, and evaluating data structures that answer approximate stochastic shortest-path queries. For example, our data structures can be used to efficiently(More)
  • 1