Seine A. Shintani

  • Citations Per Year
Learn More
The heart has an intrinsic ability to increase systolic force in response to a rise in ventricular filling (the Frank–Starling law of the heart). It is widely accepted that the length dependence of myocardial activation underlies the Frank–Starling law of the heart. Recent advances in muscle physiology have enabled the identification of the factors involved(More)
Nanometry is widely used in biological sciences to analyze the movement of molecules or molecular assemblies in cells and in vivo. In cardiac muscle, a change in sarcomere length (SL) by a mere ∼100 nm causes a substantial change in contractility, indicating the need for the simultaneous measurement of SL and intracellular Ca(2+) concentration ([Ca(2+)]i)(More)
It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by(More)
In the present study, we investigated the effects of infra-red laser irradiation on sarcomere dynamics in living neonatal cardiomyocytes of the rat. A rapid increase in temperature to >~38 °C induced [Ca(2+)]i-independent high-frequency (~5-10 Hz) sarcomeric auto-oscillations (Hyperthermal Sarcomeric Oscillations; HSOs). In myocytes with the intact(More)
SPOC (spontaneous oscillatory contraction) is a phenomenon observed in striated muscle under intermediate activation conditions. Recently, we constructed a theoretical model of SPOC for a sarcomere, a unit sarcomere model, which explains the behavior of SPOC at each sarcomere level. We also constructed a single myofibril model, which visco-elastically(More)
Our study considers the mechanism of the spontaneous oscillations of molecular motors that are driven by the power stroke principle by applying linear stability analysis around the stationary solution. By representing the coupling equation of microscopic molecular motor dynamics and mesoscopic sarcomeric dynamics by a rank-1 updated matrix system, we(More)
The cardiac pump function is a result of a rise in intracellular Ca2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imaging is widely performed in today's clinical as well as(More)
In cardiac muscle, contraction is triggered by sarcolemmal depolarization, resulting in an intracellular Ca(2+) transient, binding of Ca(2+) to troponin, and subsequent cross-bridge formation (excitation-contraction [EC] coupling). Here, we develop a novel experimental system for simultaneous nano-imaging of intracellular Ca(2+) dynamics and single(More)
  • 1