Learn More
Studies of individual neurons in area MT have traditionally investigated their sensitivity to constant speeds. We investigated acceleration sensitivity in MT neurons by comparing their responses to constant steps and linear ramps in stimulus speed. Speed ramps constituted constant accelerations and decelerations between 0 and 240 degrees /s. Our results(More)
The responses of neurons in the middle temporal and medial superior temporal areas of macaque cortex are suppressed during saccades compared with saccade-like stimulus movements. We utilized the short-latency ocular following paradigm to show that this saccadic suppression is followed by postsaccadic enhancement of motion responses. The level of enhancement(More)
We recorded from single units in the pretectal nucleus of the optic tract (NOT) of the nonhuman primate. Specifically, we examined units that are modulated during smooth tracking of a small laser spot against a dark background. We used a nonlinear optimization procedure to determine whether the unit responses of these parafoveal cells are better described(More)
Saccular and utricular organs are essential for postural stability and gaze control. Although saccular and utricular inputs are known to terminate on vestibular neurons, few previous studies have precisely elucidated the origin of these inputs. We investigated the saccular and utricular inputs to single vestibular neurons in whole vestibular nuclei of(More)
The cortical pursuit system begins the process of transforming visual signals into commands for smooth pursuit (SP) eye movements. The frontal eye field (FEF), located in the fundus of arcuate sulcus, is known to play a role in SP and gaze pursuit movements. This role is supported, at least in part, by FEF projections to the rostral nucleus reticularis(More)
We examined whether otolith-activated second- and third-order vestibular nucleus neurons received commissural inhibition from the contralateral otolithic macula oriented in the same geometric plane. For this purpose we performed intracellular recording in vestibular nucleus neurons after stimulation of the ipsi- and contralateral utricular and saccular(More)
The smooth pursuit eye movement (SPEM) system is much more sensitive to target motion perturbations during pursuit than during fixation. This sensitivity is commonly attributed to a dynamic gain control mechanism. Neither the neural substrate nor the functional architecture for this gain control has been fully revealed. There are at least two cortical areas(More)
The primate middle temporal area (MT) is involved in the analysis and perception of visual motion, which is generated actively by eye and body movements and passively when objects move. We studied the responses of single cells in area MT of awake macaques, comparing the direction tuning and latencies of responses evoked by wide-field texture motion during(More)
Properties of otolith inputs to vestibulocerebellar neurons were investigated in 14 adult cats. In the vestibular nuclei, we recorded single-unit activities that responded orthodromically after stimulation of the utricular and/or saccular nerves and antidromically after stimulation of the cerebellum (uvula-nodulus and anterior vermis). Descending axonal(More)